Ling Li , Yangyang Feng , Jingbo Zhou , Fangyuan Shao , Yuzhong Peng , Sitian Zang , Josh Haipeng Lei , Heng Sun , Dongyang Tang , Shiqi Lin , Jinghong Chen , Hanghang Li , Xiangpeng Chu , Yunfeng Qiao , Xinyu Guo , Kakun Wu , Xiaoling Xu , Chu-Xia Deng
{"title":"蛋白酶体通过抑制线粒体蛋白输入和促进ros - bnip3介导的线粒体自噬来抑制抗癌药物诱导的细胞毒性","authors":"Ling Li , Yangyang Feng , Jingbo Zhou , Fangyuan Shao , Yuzhong Peng , Sitian Zang , Josh Haipeng Lei , Heng Sun , Dongyang Tang , Shiqi Lin , Jinghong Chen , Hanghang Li , Xiangpeng Chu , Yunfeng Qiao , Xinyu Guo , Kakun Wu , Xiaoling Xu , Chu-Xia Deng","doi":"10.1016/j.drup.2025.101294","DOIUrl":null,"url":null,"abstract":"<div><div>Multidrug resistance (MDR) is associated with increased proteasome activity, which facilitates the clearance of damaged proteins and reduced mitochondrial activity, which contributes to quiescence. However, the mechanistic link between protein damage, mitochondrial dysfunction, and proteasome activity remains elusive. Here, we demonstrate that chemical drugs bind to newly synthesized mitochondrial proteins, which are largely unfolded and are coimported into the mitochondrion before appearing in the lysosome and/or nucleus. This triggers a mitochondrion-lysosome–mediated chain reaction, including the integrity stress response (ISR) and the mitochondrial unfolded protein response (UPR<sup>mt</sup>), followed by increased lysosome biogenesis and PINK1–Parkin independent but ROS–BNIP3–mediated mitophagy. We further observed that proteasomes are the main controller of the mitochondrion-lysosome reaction by monitoring proteostasis, suppressing mitochondrial protein import and promoting mitophagy under both normal and drug-treated conditions. The combination of chemical drugs and the proteasome inhibitor bortezomib (BTZ) triggered excessive mitochondrial import of damaged proteins, overwhelming mitochondrial capacity, causing mitochondrial membrane damage, profound mitochondrial ROS production, lysosome membrane permeabilization, impaired mitophagy, and proteostasis stress-induced cell death.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"83 ","pages":"Article 101294"},"PeriodicalIF":21.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteasomes suppress anticancer drug-induced cytotoxicity by inhibiting mitochondrial protein import and promoting ROS-BNIP3-mediated mitophagy\",\"authors\":\"Ling Li , Yangyang Feng , Jingbo Zhou , Fangyuan Shao , Yuzhong Peng , Sitian Zang , Josh Haipeng Lei , Heng Sun , Dongyang Tang , Shiqi Lin , Jinghong Chen , Hanghang Li , Xiangpeng Chu , Yunfeng Qiao , Xinyu Guo , Kakun Wu , Xiaoling Xu , Chu-Xia Deng\",\"doi\":\"10.1016/j.drup.2025.101294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multidrug resistance (MDR) is associated with increased proteasome activity, which facilitates the clearance of damaged proteins and reduced mitochondrial activity, which contributes to quiescence. However, the mechanistic link between protein damage, mitochondrial dysfunction, and proteasome activity remains elusive. Here, we demonstrate that chemical drugs bind to newly synthesized mitochondrial proteins, which are largely unfolded and are coimported into the mitochondrion before appearing in the lysosome and/or nucleus. This triggers a mitochondrion-lysosome–mediated chain reaction, including the integrity stress response (ISR) and the mitochondrial unfolded protein response (UPR<sup>mt</sup>), followed by increased lysosome biogenesis and PINK1–Parkin independent but ROS–BNIP3–mediated mitophagy. We further observed that proteasomes are the main controller of the mitochondrion-lysosome reaction by monitoring proteostasis, suppressing mitochondrial protein import and promoting mitophagy under both normal and drug-treated conditions. The combination of chemical drugs and the proteasome inhibitor bortezomib (BTZ) triggered excessive mitochondrial import of damaged proteins, overwhelming mitochondrial capacity, causing mitochondrial membrane damage, profound mitochondrial ROS production, lysosome membrane permeabilization, impaired mitophagy, and proteostasis stress-induced cell death.</div></div>\",\"PeriodicalId\":51022,\"journal\":{\"name\":\"Drug Resistance Updates\",\"volume\":\"83 \",\"pages\":\"Article 101294\"},\"PeriodicalIF\":21.7000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Resistance Updates\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1368764625000974\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1368764625000974","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Proteasomes suppress anticancer drug-induced cytotoxicity by inhibiting mitochondrial protein import and promoting ROS-BNIP3-mediated mitophagy
Multidrug resistance (MDR) is associated with increased proteasome activity, which facilitates the clearance of damaged proteins and reduced mitochondrial activity, which contributes to quiescence. However, the mechanistic link between protein damage, mitochondrial dysfunction, and proteasome activity remains elusive. Here, we demonstrate that chemical drugs bind to newly synthesized mitochondrial proteins, which are largely unfolded and are coimported into the mitochondrion before appearing in the lysosome and/or nucleus. This triggers a mitochondrion-lysosome–mediated chain reaction, including the integrity stress response (ISR) and the mitochondrial unfolded protein response (UPRmt), followed by increased lysosome biogenesis and PINK1–Parkin independent but ROS–BNIP3–mediated mitophagy. We further observed that proteasomes are the main controller of the mitochondrion-lysosome reaction by monitoring proteostasis, suppressing mitochondrial protein import and promoting mitophagy under both normal and drug-treated conditions. The combination of chemical drugs and the proteasome inhibitor bortezomib (BTZ) triggered excessive mitochondrial import of damaged proteins, overwhelming mitochondrial capacity, causing mitochondrial membrane damage, profound mitochondrial ROS production, lysosome membrane permeabilization, impaired mitophagy, and proteostasis stress-induced cell death.
期刊介绍:
Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation.
Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective.
*Expert reviews in clinical and basic drug resistance research in oncology and infectious disease
*Describes emerging technologies and therapies, particularly those that overcome drug resistance
*Emphasises common themes in microbial and cancer research