STM14_5441-STM14_5442的结构和功能分析:一个针对氨基糖苷的持续形成的潜在机制

IF 15.8 1区 医学 Q1 PHARMACOLOGY & PHARMACY
Hyun-Jong Eun , Seok-Won Jang , Ju-Hyun Park , Jooyeon Lee , Ki-Young Lee , Eun-Jin Lee , Bong-Jin Lee
{"title":"STM14_5441-STM14_5442的结构和功能分析:一个针对氨基糖苷的持续形成的潜在机制","authors":"Hyun-Jong Eun ,&nbsp;Seok-Won Jang ,&nbsp;Ju-Hyun Park ,&nbsp;Jooyeon Lee ,&nbsp;Ki-Young Lee ,&nbsp;Eun-Jin Lee ,&nbsp;Bong-Jin Lee","doi":"10.1016/j.drup.2025.101210","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>The ability to eliminate bacterial persister cells is still a medical challenge that has yet to be overcome. These cells represent a unique subpopulation within bacterial communities and are characterized by a reduced susceptibility to antibiotics with growth retardation. In this study, we investigated the molecular basis of persister formation in <em>Salmonella</em> Typhimurium 14028 s under aminoglycoside stress.</div></div><div><h3>Methods</h3><div>We analyzed the crystal structure of the STM14_5441–STM14_5442 complex, which belongs to the type II toxin-antitoxin system, and identified key ribosome-binding residues in STM14_5441. Changes in the antibiotic susceptibility of <em>Salmonella</em> caused by the loss of the ribosome-binding property of STM14_5441 were assessed. We conducted intracellular ATP assays under aminoglycoside stress and RNA-seq analysis following STM14_5441 induction.</div></div><div><h3>Results</h3><div>Our studies demonstrated the critical role of STM14_5441 in the formation of persister cells in <em>Salmonella</em>, particularly those under aminoglycoside stress. We observed that a loss of ribosome binding in STM14_5441 resulted in increased antibiotic susceptibility. Additionally, intracellular ATP assays revealed increased ATP levels in STM14_5441 induced group, and RNA-seq analysis identified several genes that play a role in this phenomenon.</div></div><div><h3>Conclusions</h3><div>The present data suggest that persister forms under aminoglycoside stress through the following mechanisms: i) inhibition of membrane hyperpolarization by impeding F<sub>1</sub>Fo ATP synthase activity and ii) enhanced poststress recovery by ATP storage and increased protein synthesis capacity. Based on this suggestion, we reannotated the STM14_5441-STM14_5442 TA pair as the ResTA (RNA cleavage-induced energy storage toxin-antitoxin) system. Furthermore, new insights into the function of TA systems may lay the groundwork for developing novel strategies to target bacterial persister cells, thereby preventing the accelerated emergence of antibiotic resistance in bacterial populations.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"79 ","pages":"Article 101210"},"PeriodicalIF":15.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and functional analyses of STM14_5441-STM14_5442: A potential mechanism for persister formation against aminoglycosides\",\"authors\":\"Hyun-Jong Eun ,&nbsp;Seok-Won Jang ,&nbsp;Ju-Hyun Park ,&nbsp;Jooyeon Lee ,&nbsp;Ki-Young Lee ,&nbsp;Eun-Jin Lee ,&nbsp;Bong-Jin Lee\",\"doi\":\"10.1016/j.drup.2025.101210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Aims</h3><div>The ability to eliminate bacterial persister cells is still a medical challenge that has yet to be overcome. These cells represent a unique subpopulation within bacterial communities and are characterized by a reduced susceptibility to antibiotics with growth retardation. In this study, we investigated the molecular basis of persister formation in <em>Salmonella</em> Typhimurium 14028 s under aminoglycoside stress.</div></div><div><h3>Methods</h3><div>We analyzed the crystal structure of the STM14_5441–STM14_5442 complex, which belongs to the type II toxin-antitoxin system, and identified key ribosome-binding residues in STM14_5441. Changes in the antibiotic susceptibility of <em>Salmonella</em> caused by the loss of the ribosome-binding property of STM14_5441 were assessed. We conducted intracellular ATP assays under aminoglycoside stress and RNA-seq analysis following STM14_5441 induction.</div></div><div><h3>Results</h3><div>Our studies demonstrated the critical role of STM14_5441 in the formation of persister cells in <em>Salmonella</em>, particularly those under aminoglycoside stress. We observed that a loss of ribosome binding in STM14_5441 resulted in increased antibiotic susceptibility. Additionally, intracellular ATP assays revealed increased ATP levels in STM14_5441 induced group, and RNA-seq analysis identified several genes that play a role in this phenomenon.</div></div><div><h3>Conclusions</h3><div>The present data suggest that persister forms under aminoglycoside stress through the following mechanisms: i) inhibition of membrane hyperpolarization by impeding F<sub>1</sub>Fo ATP synthase activity and ii) enhanced poststress recovery by ATP storage and increased protein synthesis capacity. Based on this suggestion, we reannotated the STM14_5441-STM14_5442 TA pair as the ResTA (RNA cleavage-induced energy storage toxin-antitoxin) system. Furthermore, new insights into the function of TA systems may lay the groundwork for developing novel strategies to target bacterial persister cells, thereby preventing the accelerated emergence of antibiotic resistance in bacterial populations.</div></div>\",\"PeriodicalId\":51022,\"journal\":{\"name\":\"Drug Resistance Updates\",\"volume\":\"79 \",\"pages\":\"Article 101210\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Resistance Updates\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136876462500010X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136876462500010X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

消灭细菌持久性细胞的能力仍然是一个尚未克服的医学挑战。这些细胞代表了细菌群落中一个独特的亚群,其特点是对抗生素的敏感性降低,生长迟缓。在本研究中,我们研究了鼠伤寒沙门氏菌14028 s在氨基糖苷胁迫下持续形成的分子基础。方法分析STM14_5441 - stm14_5442复合体的晶体结构,鉴定STM14_5441的关键核糖体结合残基,该复合体属于II型毒素-抗毒素系统。评估STM14_5441核糖体结合特性丧失对沙门氏菌抗生素敏感性的影响。我们在STM14_5441诱导下进行了氨基糖苷胁迫下的细胞内ATP测定和RNA-seq分析。结果我们的研究证实了STM14_5441在沙门氏菌持续性细胞形成中的关键作用,特别是在氨基糖苷胁迫下的持续性细胞。我们观察到STM14_5441中核糖体结合的缺失导致抗生素敏感性增加。此外,细胞内ATP检测显示STM14_5441诱导组ATP水平升高,RNA-seq分析发现了几个在这一现象中起作用的基因。结论氨基糖苷胁迫下持久性的形成机制为:1)通过阻碍F1Fo ATP合成酶活性抑制细胞膜超极化;2)通过ATP储存和提高蛋白质合成能力促进应激后恢复。基于此,我们将STM14_5441-STM14_5442 TA对重新标注为ResTA (RNA切割诱导的能量储存毒素-抗毒素)系统。此外,对TA系统功能的新见解可能为开发针对细菌持久性细胞的新策略奠定基础,从而防止细菌群体中抗生素耐药性的加速出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural and functional analyses of STM14_5441-STM14_5442: A potential mechanism for persister formation against aminoglycosides

Aims

The ability to eliminate bacterial persister cells is still a medical challenge that has yet to be overcome. These cells represent a unique subpopulation within bacterial communities and are characterized by a reduced susceptibility to antibiotics with growth retardation. In this study, we investigated the molecular basis of persister formation in Salmonella Typhimurium 14028 s under aminoglycoside stress.

Methods

We analyzed the crystal structure of the STM14_5441–STM14_5442 complex, which belongs to the type II toxin-antitoxin system, and identified key ribosome-binding residues in STM14_5441. Changes in the antibiotic susceptibility of Salmonella caused by the loss of the ribosome-binding property of STM14_5441 were assessed. We conducted intracellular ATP assays under aminoglycoside stress and RNA-seq analysis following STM14_5441 induction.

Results

Our studies demonstrated the critical role of STM14_5441 in the formation of persister cells in Salmonella, particularly those under aminoglycoside stress. We observed that a loss of ribosome binding in STM14_5441 resulted in increased antibiotic susceptibility. Additionally, intracellular ATP assays revealed increased ATP levels in STM14_5441 induced group, and RNA-seq analysis identified several genes that play a role in this phenomenon.

Conclusions

The present data suggest that persister forms under aminoglycoside stress through the following mechanisms: i) inhibition of membrane hyperpolarization by impeding F1Fo ATP synthase activity and ii) enhanced poststress recovery by ATP storage and increased protein synthesis capacity. Based on this suggestion, we reannotated the STM14_5441-STM14_5442 TA pair as the ResTA (RNA cleavage-induced energy storage toxin-antitoxin) system. Furthermore, new insights into the function of TA systems may lay the groundwork for developing novel strategies to target bacterial persister cells, thereby preventing the accelerated emergence of antibiotic resistance in bacterial populations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Resistance Updates
Drug Resistance Updates 医学-药学
CiteScore
26.20
自引率
11.90%
发文量
32
审稿时长
29 days
期刊介绍: Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation. Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective. *Expert reviews in clinical and basic drug resistance research in oncology and infectious disease *Describes emerging technologies and therapies, particularly those that overcome drug resistance *Emphasises common themes in microbial and cancer research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信