Drug Resistance Updates最新文献

筛选
英文 中文
Intercellular adhesion molecule-1 suppresses TMZ chemosensitivity in acquired TMZ-resistant gliomas by increasing assembly of ABCB1 on the membrane 细胞间粘附分子-1通过增加ABCB1在膜上的组装抑制获得性TMZ耐药胶质瘤的TMZ化疗敏感性。
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-06-24 DOI: 10.1016/j.drup.2024.101112
Xin Zhang , Yingying Tan , Tao Li , Dashan Tan , Bin Fu , Mengdi Yang , Yaxin Chen , Mengran Cao , Chenyuan Xuan , Qianming Du , Rong Hu , Qing Wang
{"title":"Intercellular adhesion molecule-1 suppresses TMZ chemosensitivity in acquired TMZ-resistant gliomas by increasing assembly of ABCB1 on the membrane","authors":"Xin Zhang ,&nbsp;Yingying Tan ,&nbsp;Tao Li ,&nbsp;Dashan Tan ,&nbsp;Bin Fu ,&nbsp;Mengdi Yang ,&nbsp;Yaxin Chen ,&nbsp;Mengran Cao ,&nbsp;Chenyuan Xuan ,&nbsp;Qianming Du ,&nbsp;Rong Hu ,&nbsp;Qing Wang","doi":"10.1016/j.drup.2024.101112","DOIUrl":"10.1016/j.drup.2024.101112","url":null,"abstract":"<div><h3>Aims</h3><p>Despite aggressive treatment, the recurrence of glioma is an inevitable occurrence, leading to unsatisfactory clinical outcomes. A plausible explanation for this phenomenon is the phenotypic alterations that glioma cells undergo aggressive therapies, such as TMZ-therapy. However, the underlying mechanisms behind these changes are not well understood.</p></div><div><h3>Methods</h3><p>The TMZ chemotherapy resistance model was employed to assess the expression of intercellular adhesion molecule-1 (ICAM1) in both in vitro and in vivo settings. The potential role of ICAM1 in regulating TMZ chemotherapy resistance was investigated through knockout and overexpression techniques. Furthermore, the mechanism underlying ICAM1-mediated TMZ chemotherapy resistance was examined using diverse molecular biological methods, and the lipid raft protein was subsequently isolated to investigate the cellular subcomponents where ICAM1 operates.</p></div><div><h3>Results</h3><p>Acquired TMZ resistant (TMZ-R) glioma models heightened production of intercellular adhesion molecule-1 (ICAM1) in TMZ-R glioma cells. Additionally, we observed a significant suppression of TMZ-R glioma proliferation upon inhibition of ICAM1, which was attributed to the enhanced intracellular accumulation of TMZ. Our findings provide evidence supporting the role of ICAM1, a proinflammatory marker, in promoting the expression of ABCB1 on the cell membrane of TMZ-resistant cells. We have elucidated the mechanistic pathway by which ICAM1 modulates phosphorylated moesin, leading to an increase in ABCB1 expression on the membrane. Furthermore, our research has revealed that the regulation of moesin by ICAM1 was instrumental in facilitating the assembly of ABCB1 exclusively on the lipid raft of the membrane.</p></div><div><h3>Conclusions</h3><p>Our findings suggest that ICAM1 is an important mediator in TMZ-resistant gliomas and targeting ICAM1 may provide a new strategy for enhancing the efficacy of TMZ therapy against glioma.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1368764624000700/pdfft?md5=0d7967e1f48378679a6226daad3cb472&pid=1-s2.0-S1368764624000700-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cancer plasticity in therapy resistance: Mechanisms and novel strategies 抗药性中的癌症可塑性:机制与新策略
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-06-22 DOI: 10.1016/j.drup.2024.101114
Xing Niu , Wenjing Liu , Yinling Zhang , Jing Liu , Jianjun Zhang , Bo Li , Yue Qiu , Peng Zhao , Zhongmiao Wang , Zhe Wang
{"title":"Cancer plasticity in therapy resistance: Mechanisms and novel strategies","authors":"Xing Niu ,&nbsp;Wenjing Liu ,&nbsp;Yinling Zhang ,&nbsp;Jing Liu ,&nbsp;Jianjun Zhang ,&nbsp;Bo Li ,&nbsp;Yue Qiu ,&nbsp;Peng Zhao ,&nbsp;Zhongmiao Wang ,&nbsp;Zhe Wang","doi":"10.1016/j.drup.2024.101114","DOIUrl":"10.1016/j.drup.2024.101114","url":null,"abstract":"<div><p>Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to: “Circumventing drug resistance in gastric cancer: A spatial multi-omics exploration of chemo and immuno-therapeutic response dynamics” [Drug Resist Updates 74 (2024) 101080] 更正:"胃癌耐药性的规避:化疗和免疫治疗反应动态的空间多组学探索" [Drug Resist Updates 74 (2024) 101080]。
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-06-19 DOI: 10.1016/j.drup.2024.101101
{"title":"Corrigendum to: “Circumventing drug resistance in gastric cancer: A spatial multi-omics exploration of chemo and immuno-therapeutic response dynamics” [Drug Resist Updates 74 (2024) 101080]","authors":"","doi":"10.1016/j.drup.2024.101101","DOIUrl":"10.1016/j.drup.2024.101101","url":null,"abstract":"","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1368764624000591/pdfft?md5=2ead238e638e281ff287d547daeddbdc&pid=1-s2.0-S1368764624000591-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface chemistry engineered selenium nanoparticles as bactericidal and immuno-modulating dual-functional agents for combating methicillin-resistant Staphylococcus aureus Infection 表面化学工程硒纳米粒子作为抗耐甲氧西林金黄色葡萄球菌感染的杀菌和免疫调节双功能制剂
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-06-15 DOI: 10.1016/j.drup.2024.101102
Qingyue Bu , Dan Jiang , Yangyang Yu, Yunqing Deng, Tianfeng Chen, Ligeng Xu
{"title":"Surface chemistry engineered selenium nanoparticles as bactericidal and immuno-modulating dual-functional agents for combating methicillin-resistant Staphylococcus aureus Infection","authors":"Qingyue Bu ,&nbsp;Dan Jiang ,&nbsp;Yangyang Yu,&nbsp;Yunqing Deng,&nbsp;Tianfeng Chen,&nbsp;Ligeng Xu","doi":"10.1016/j.drup.2024.101102","DOIUrl":"10.1016/j.drup.2024.101102","url":null,"abstract":"<div><p>Because of the extremely complexed microenvironment of drug-resistant bacterial infection, nanomaterials with both bactericidal and immuno-modulating activities are undoubtedly the ideal modality for overcoming drug resistance. Herein, we precisely engineered the surface chemistry of selenium nanoparticles (SeNPs) using neutral (polyvinylpyrrolidone-PVP), anionic (letinan-LET) and cationic (chitosan-CS) surfactants. It was found that surface chemistry greatly influenced the bioactivities of functionalized SeNPs, their interactions with methicillin-resistant Staphylococcus aureus (MRSA), immune cells and metabolisms. LET-functionalized SeNPs with distinct metabolisms exhibited the best inhibitory efficacy compared to other kinds of SeNPs against MRSA through inducing robust ROS generation and damaging bacterial cell wall. Meanwhile, only LET-SeNPs could effectively activate natural kill (NK) cells, and enhance the phagocytic capability of macrophages and its killing activity against bacteria. Furthermore, <em>in vivo</em> studies suggested that LET-SeNPs treatment highly effectively combated MRSA infection and promoted wound healing by triggering much more mouse NK cells, CD8<sup>+</sup> and CD4<sup>+</sup> T lymphocytes infiltrating into the infected area at the early stage to efficiently eliminate MRSA in the mouse model. This study demonstrates that the novel functionalized SeNP with dual functions could serve as an effective antibacterial agent and could guide the development of next generation antibacterial agents.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141463785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LncRNA DYNLRB2-AS1 promotes gemcitabine resistance of nasopharyngeal carcinoma by inhibiting the ubiquitination degradation of DHX9 protein LncRNA DYNLRB2-AS1 通过抑制 DHX9 蛋白的泛素化降解促进吉西他滨对鼻咽癌的耐药性
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-06-14 DOI: 10.1016/j.drup.2024.101111
Kai-Lin Chen , Sai-Wei Huang , Ji-Jin Yao , Shi-Wei He , Sha Gong , Xi-Rong Tan , Ye-Lin Liang , Jun-Yan Li , Sheng-Yan Huang , Ying-Qin Li , Yin Zhao , Han Qiao , Sha Xu , Shengbing Zang , Jun Ma , Na Liu
{"title":"LncRNA DYNLRB2-AS1 promotes gemcitabine resistance of nasopharyngeal carcinoma by inhibiting the ubiquitination degradation of DHX9 protein","authors":"Kai-Lin Chen ,&nbsp;Sai-Wei Huang ,&nbsp;Ji-Jin Yao ,&nbsp;Shi-Wei He ,&nbsp;Sha Gong ,&nbsp;Xi-Rong Tan ,&nbsp;Ye-Lin Liang ,&nbsp;Jun-Yan Li ,&nbsp;Sheng-Yan Huang ,&nbsp;Ying-Qin Li ,&nbsp;Yin Zhao ,&nbsp;Han Qiao ,&nbsp;Sha Xu ,&nbsp;Shengbing Zang ,&nbsp;Jun Ma ,&nbsp;Na Liu","doi":"10.1016/j.drup.2024.101111","DOIUrl":"10.1016/j.drup.2024.101111","url":null,"abstract":"<div><p>Gemcitabine (GEM) based induction chemotherapy is a standard treatment for locoregionally advanced nasopharyngeal carcinoma (NPC). However, approximately 15 % of patients are still resistant to GEM-containing chemotherapy, which leads to treatment failure. Nevertheless, the underlying mechanisms of GEM resistance remain poorly understood. Herein, based on a microarray analysis, we identified 221 dysregulated lncRNAs, of which, DYNLRB2-AS1 was one of the most upregulated lncRNAs in GEM-resistance NPC cell lines. DYNLRB2-AS1 was shown to function as contain an oncogenic lncRNA that promoted NPC GEM resistance, cell proliferation, but inhibited cell apoptosis. Mechanistically, DYNLRB2-AS1 could directly bind to the DHX9 protein and prevent its interaction with the E3 ubiquitin ligase PRPF19, and thus blocking PRPF19-mediated DHX9 degradation, which ultimately facilitated the repair of DNA damage in the presence of GEM. Clinically, higher DYNLRB2-AS1 expression indicated an unfavourable overall survival of NPC patients who received induction chemotherapy. Overall, this study identified the oncogenic lncRNA DYNLRB2-AS1 as an independent prognostic biomarker for patients with locally advanced NPC and as a potential therapeutic target for overcoming GEM chemoresistance in NPC.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141403928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lansoprazole (LPZ) reverses multidrug resistance (MDR) in cancer through impeding ATP-binding cassette (ABC) transporter-mediated chemotherapeutic drug efflux and lysosomal sequestration 兰索拉唑(LPZ)通过阻碍ATP结合盒(ABC)转运体介导的化疗药物外流和溶酶体螯合,逆转癌症的多药耐药性(MDR)。
IF 24.3 1区 医学
Drug Resistance Updates Pub Date : 2024-06-04 DOI: 10.1016/j.drup.2024.101100
Ning Ji , Hui Li , Yixuan Zhang , Yuelin Li , Peiyu Wang , Xin Chen , Yi-Nan Liu , Jing-Quan Wang , Yuqi Yang , Zhe-Sheng Chen , Yueguo Li , Ran Wang , Dexin Kong
{"title":"Lansoprazole (LPZ) reverses multidrug resistance (MDR) in cancer through impeding ATP-binding cassette (ABC) transporter-mediated chemotherapeutic drug efflux and lysosomal sequestration","authors":"Ning Ji ,&nbsp;Hui Li ,&nbsp;Yixuan Zhang ,&nbsp;Yuelin Li ,&nbsp;Peiyu Wang ,&nbsp;Xin Chen ,&nbsp;Yi-Nan Liu ,&nbsp;Jing-Quan Wang ,&nbsp;Yuqi Yang ,&nbsp;Zhe-Sheng Chen ,&nbsp;Yueguo Li ,&nbsp;Ran Wang ,&nbsp;Dexin Kong","doi":"10.1016/j.drup.2024.101100","DOIUrl":"10.1016/j.drup.2024.101100","url":null,"abstract":"<div><h3>Aims</h3><p>Lansoprazole is one of the many proton pump inhibitors (PPIs) that acts more strongly with ABCB1 and ABCG2. The present study is to investigate the potential of lansoprazole on reversal of ABCB1/G2-mediated MDR in cancer, <em>in vitro</em> and <em>in vivo</em>.</p></div><div><h3>Methods</h3><p>Reversal studies and combination evaluation were conducted to determine the synergistic anti-MDR effects on lansoprazole. Lysosomal staining was used to determination of lansoprazole on ABCB1-mediated lysosomal sequestration. Substrate accumulation and efflux assays, ATPase activity, and molecular docking were conducted to evaluate lansoprazole on ABCB1/G2 functions. Western blot and immunofluorescence were used to detect lansoprazole on ABCB1/G2 expression and subcellular localization. MDR nude mice models were established to evaluate the effects of lansoprazole on MDR <em>in vivo</em>.</p></div><div><h3>Results</h3><p>Lansoprazole attenuated ABCB1/G2-mediated MDR and exhibited synergistic effects with substrate drugs in MDR cells. <em>In vivo</em> experiments demonstrated that lansoprazole attenuated ABCB1/G2-mediated MDR and exhibited synergistic effects that augmented the sensitivity of substrate anticancer drugs in ABCB1/G2-mediated settings without obvious toxicity. Lansoprazole impeded lysosomal sequestration mediated by ABCB1, leading to a substantial increase in intracellular accumulation of substrate drugs. The effects of lansoprazole were not attributable to downregulation or alterations in subcellular localization of ABCB1/G2. Lansoprazole promoted the ATPase activity of ABCB1/G2 and competitively bound to the substrate-binding region of ABCB1/G2.</p></div><div><h3>Conclusions</h3><p>These findings present novel therapeutic avenues whereby the combination of lansoprazole and chemotherapeutic agents mitigates MDR mediated by ABCB1/G2 overexpression.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":24.3,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141276541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting anoikis resistance as a strategy for cancer therapy 以抗药性为靶点的癌症治疗策略
IF 24.3 1区 医学
Drug Resistance Updates Pub Date : 2024-06-01 DOI: 10.1016/j.drup.2024.101099
Yumin Wang , Sihang Cheng , Joshua S. Fleishman , Jichao Chen , Hailin Tang , Zhe-Sheng Chen , Wenkuan Chen , Mingchao Ding
{"title":"Targeting anoikis resistance as a strategy for cancer therapy","authors":"Yumin Wang ,&nbsp;Sihang Cheng ,&nbsp;Joshua S. Fleishman ,&nbsp;Jichao Chen ,&nbsp;Hailin Tang ,&nbsp;Zhe-Sheng Chen ,&nbsp;Wenkuan Chen ,&nbsp;Mingchao Ding","doi":"10.1016/j.drup.2024.101099","DOIUrl":"10.1016/j.drup.2024.101099","url":null,"abstract":"<div><p>Anoikis, known as matrix detachment-induced apoptosis or detachment-induced cell death, is crucial for tissue development and homeostasis. Cancer cells develop means to evade anoikis, e.g. anoikis resistance, thereby allowing for cells to survive under anchorage-independent conditions. Uncovering the mechanisms of anoikis resistance will provide details about cancer metastasis, and potential strategies against cancer cell dissemination and metastasis. Here, we summarize the principal elements and core molecular mechanisms of anoikis and anoikis resistance. We discuss the latest progress of how anoikis and anoikis resistance are regulated in cancers. Furthermore, we summarize emerging data on selective compounds and nanomedicines, explaining how inhibiting anoikis resistance can serve as a meaningful treatment modality against cancers. Finally, we discuss the key limitations of this therapeutic paradigm and possible strategies to overcome them. In this review, we suggest that pharmacological modulation of anoikis and anoikis resistance by bioactive compounds could surmount anoikis resistance, highlighting a promising therapeutic regimen that could be used to overcome anoikis resistance in cancers.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":24.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141232016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of biomimetic nanovaccines in cancer immunotherapy: A useful strategy to help combat immunotherapy resistance 生物仿生纳米疫苗在癌症免疫疗法中的应用:帮助对抗免疫疗法耐药性的有效策略
IF 24.3 1区 医学
Drug Resistance Updates Pub Date : 2024-06-01 DOI: 10.1016/j.drup.2024.101098
Zhijie Xu , Haiyan Zhou , Tongfei Li , Qiaoli Yi , Abhimanyu Thakur , Kui Zhang , Xuelei Ma , Jiang-Jiang Qin , Yuanliang Yan
{"title":"Application of biomimetic nanovaccines in cancer immunotherapy: A useful strategy to help combat immunotherapy resistance","authors":"Zhijie Xu ,&nbsp;Haiyan Zhou ,&nbsp;Tongfei Li ,&nbsp;Qiaoli Yi ,&nbsp;Abhimanyu Thakur ,&nbsp;Kui Zhang ,&nbsp;Xuelei Ma ,&nbsp;Jiang-Jiang Qin ,&nbsp;Yuanliang Yan","doi":"10.1016/j.drup.2024.101098","DOIUrl":"https://doi.org/10.1016/j.drup.2024.101098","url":null,"abstract":"<div><p>Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":24.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141244735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CircPDIA3/miR-449a/XBP1 feedback loop curbs pyroptosis by inhibiting palmitoylation of the GSDME-C domain to induce chemoresistance of colorectal cancer CircPDIA3/miR-449a/XBP1反馈环路通过抑制GSDME-C结构域的棕榈酰化来抑制热蛋白沉积,从而诱导结直肠癌的化疗耐药性
IF 24.3 1区 医学
Drug Resistance Updates Pub Date : 2024-05-28 DOI: 10.1016/j.drup.2024.101097
Jiatong Lin , Zejian Lyu , Huolun Feng , Huajie Xie , Jingwen Peng , Weifu Zhang , Jun Zheng , Jiabin Zheng , Zihao Pan , Yong Li
{"title":"CircPDIA3/miR-449a/XBP1 feedback loop curbs pyroptosis by inhibiting palmitoylation of the GSDME-C domain to induce chemoresistance of colorectal cancer","authors":"Jiatong Lin ,&nbsp;Zejian Lyu ,&nbsp;Huolun Feng ,&nbsp;Huajie Xie ,&nbsp;Jingwen Peng ,&nbsp;Weifu Zhang ,&nbsp;Jun Zheng ,&nbsp;Jiabin Zheng ,&nbsp;Zihao Pan ,&nbsp;Yong Li","doi":"10.1016/j.drup.2024.101097","DOIUrl":"https://doi.org/10.1016/j.drup.2024.101097","url":null,"abstract":"<div><p>Although oxaliplatin (OXA) is widely used in the frontline treatment of colorectal cancer (CRC), CRC recurrence is commonly observed due to OXA resistance. OXA resistance is associated with a number of factors, including abnormal regulation of pyroptosis. It is therefore important to elucidate the abnormal regulatory mechanism underlying pyroptosis. Here, we identified that the circular RNA circPDIA3 played an important role in chemoresistance in CRC. CircPDIA3 could induce chemoresistance in CRC by inhibiting pyroptosis both <em>in vitro</em> and <em>in vivo</em>. Mechanistically, RIP, RNA pull-down and co-IP assays revealed that circPDIA3 directly bonded to the GSDME-C domain, subsequently enhanced the autoinhibitory effect of the GSDME-C domain through blocking the GSDME-C domain palmitoylation by ZDHHC3 and ZDHHC17, thereby restraining pyroptosis. Additionally, it was found that the circPDIA3/miR-449a/XBP1 positive feedback loop increased the expression of circPDIA3 to induce chemoresistance. Furthermore, our clinical data and patient-derived tumor xenograft (PDX) models supported the positive association of circPDIA3 with development of chemoresistance in CRC patients. Taken together, our findings demonstrated that circPDIA3 could promote chemoresistance by amplifying the autoinhibitory effect of the GSDME-C domain through inhibition of the GSDME-C domain palmitoylation in CRC. This study provides novel insights into the mechanism of circRNA in regulating pyroptosis and providing a potential therapeutic target for reversing chemoresistance of CRC.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":24.3,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1368764624000554/pdfft?md5=83c78ec039fe215f92b9afa7902bb535&pid=1-s2.0-S1368764624000554-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141303126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KLF12 interacts with TRIM27 to affect cisplatin resistance and cancer metastasis in esophageal squamous cell carcinoma by regulating L1CAM expression KLF12与TRIM27相互作用,通过调节L1CAM的表达影响食管鳞状细胞癌的顺铂耐药性和癌症转移。
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-05-27 DOI: 10.1016/j.drup.2024.101096
Hao Zhang , Yujia Zheng , Zhen Wang , Lin Dong , Liyan Xue , Xiaolin Tian , Haiteng Deng , Qi Xue , Shugeng Gao , Yibo Gao , Chunxiang Li , Jie He
{"title":"KLF12 interacts with TRIM27 to affect cisplatin resistance and cancer metastasis in esophageal squamous cell carcinoma by regulating L1CAM expression","authors":"Hao Zhang ,&nbsp;Yujia Zheng ,&nbsp;Zhen Wang ,&nbsp;Lin Dong ,&nbsp;Liyan Xue ,&nbsp;Xiaolin Tian ,&nbsp;Haiteng Deng ,&nbsp;Qi Xue ,&nbsp;Shugeng Gao ,&nbsp;Yibo Gao ,&nbsp;Chunxiang Li ,&nbsp;Jie He","doi":"10.1016/j.drup.2024.101096","DOIUrl":"10.1016/j.drup.2024.101096","url":null,"abstract":"<div><p>Krüppel-like factor 12 (KLF12) has been characterized as a transcriptional repressor, and previous studies have unveiled its roles in angiogenesis, neural tube defect, and natural killer (NK) cell proliferation. However, the contribution of KLF12 to cancer treatment remains undefined. Here, we show that KLF12 is downregulated in various cancer types, and KLF12 downregulation promotes cisplatin resistance and cancer metastasis in esophageal squamous cell carcinoma (ESCC). Mechanistically, KLF12 binds to the promoters of L1 Cell Adhesion Molecule (L1CAM) and represses its expression. Depletion of L1CAM abrogates cisplatin resistance and cancer metastasis caused by KLF12 loss. Moreover, the E3 ubiquitin ligase tripartite motif-containing 27 (TRIM27) binds to the N-terminal region of KLF12 and ubiquitinates KLF12 at K326 via K33-linked polyubiquitination. Notably, TRIM27 depletion enhances the transcriptional activity of KLF12 and consequently inhibits L1CAM expression. Overall, our study elucidated a novel regulatory mechanism involving TRIM27, KLF12 and L1CAM, which plays a substantial role in cisplatin resistance and cancer metastasis in ESCC. Targeting these genes could be a promising approach for ESCC treatment.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1368764624000542/pdfft?md5=187095aa32767978e0fd5a94554e4ae8&pid=1-s2.0-S1368764624000542-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信