Bowen Ding , Xiaomeng Liu , Zhe Li , Xinru Xie , Jiaqi Li , Jiaqian Wang , Shouyi Li , Pengyu Wang , Yongjie Xie , Xiaoqing Ma , Hongwei Wang , Chengzhi Xie , Xin Qiao , Yumin Wang , Jingyuan Xu , Yukuan Feng , Jihui Hao
{"title":"一种新型铂(IV)前药gramine-Pt(IV)通过激活cGAS-STING和调节TGF-β-MHC-I轴来增强化学免疫治疗","authors":"Bowen Ding , Xiaomeng Liu , Zhe Li , Xinru Xie , Jiaqi Li , Jiaqian Wang , Shouyi Li , Pengyu Wang , Yongjie Xie , Xiaoqing Ma , Hongwei Wang , Chengzhi Xie , Xin Qiao , Yumin Wang , Jingyuan Xu , Yukuan Feng , Jihui Hao","doi":"10.1016/j.drup.2025.101252","DOIUrl":null,"url":null,"abstract":"<div><div>Platinum(II) (Pt(II)) drugs, such as cisplatin and oxaliplatin, played critical roles in cancer therapy; however, their efficacy is often limited by significant toxicity and the development of drug resistance. Recently, multi-target platinum(IV) (Pt(IV)) complexes, particularly those optimized with axial ligands, have emerged as promising alternatives enhancing tumor selectivity and drug stability. In this study, we synthesized a series of novel platinum(IV) prodrugs, gramine-platinum(IV), by incorporating gramine—a natural indole alkaloid that antagonizes TGF-β receptors I and II to inhibit the TGF-β signaling pathway—as an axial ligand. Among them, compound <strong>8</strong> (referred to as GP) was screened out to have the best antitumor activity. GP not only enhances the therapeutic efficacy of platinum(II) drugs but also targets TGF-β signaling. Our findings demonstrate that GP rapidly enters cells and preferentially accumulates in critical subcellular compartments, such as the nucleus and mitochondria, significantly amplifying its therapeutic impact. Notably, GP exhibits great tumor accumulation compared to cisplatin and oxaliplatin, with minimal uptake in normal tissues, highlighting its superior tumor specificity with reduced systemic toxicity. This unique characteristic enables GP to enhance therapeutic efficiency through multiple modalities, including strengthening DNA damage, reducing mitochondrial membrane potential, promoting apoptosis, and arresting cell cycle in the S phase. Moreover, GP activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling (cGAS-STING) pathway, enhancing antigen presentation and fostering robust anti-tumor immune responses. In mouse models of pancreatic and breast cancer, GP significantly inhibits tumor growth and triggers strong innate immune activation. By combining GP with anti-PD-1 therapy, immunotherapy-resistant tumors are rendered responsive, leading to a pronounced suppression of tumor growth. Overall, GP not only amplifies the DNA-damaging effects of platinum(II) drugs but also elicits durable immune responses, establishing itself as a promising chemo-immune-combined strategy for treating pancreatic and breast cancers.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"81 ","pages":"Article 101252"},"PeriodicalIF":15.8000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel platinum(IV) prodrug, gramine-Pt(IV) enhances chemoimmunotherapy by activating cGAS-STING and modulating TGF-β-MHC-I axis\",\"authors\":\"Bowen Ding , Xiaomeng Liu , Zhe Li , Xinru Xie , Jiaqi Li , Jiaqian Wang , Shouyi Li , Pengyu Wang , Yongjie Xie , Xiaoqing Ma , Hongwei Wang , Chengzhi Xie , Xin Qiao , Yumin Wang , Jingyuan Xu , Yukuan Feng , Jihui Hao\",\"doi\":\"10.1016/j.drup.2025.101252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Platinum(II) (Pt(II)) drugs, such as cisplatin and oxaliplatin, played critical roles in cancer therapy; however, their efficacy is often limited by significant toxicity and the development of drug resistance. Recently, multi-target platinum(IV) (Pt(IV)) complexes, particularly those optimized with axial ligands, have emerged as promising alternatives enhancing tumor selectivity and drug stability. In this study, we synthesized a series of novel platinum(IV) prodrugs, gramine-platinum(IV), by incorporating gramine—a natural indole alkaloid that antagonizes TGF-β receptors I and II to inhibit the TGF-β signaling pathway—as an axial ligand. Among them, compound <strong>8</strong> (referred to as GP) was screened out to have the best antitumor activity. GP not only enhances the therapeutic efficacy of platinum(II) drugs but also targets TGF-β signaling. Our findings demonstrate that GP rapidly enters cells and preferentially accumulates in critical subcellular compartments, such as the nucleus and mitochondria, significantly amplifying its therapeutic impact. Notably, GP exhibits great tumor accumulation compared to cisplatin and oxaliplatin, with minimal uptake in normal tissues, highlighting its superior tumor specificity with reduced systemic toxicity. This unique characteristic enables GP to enhance therapeutic efficiency through multiple modalities, including strengthening DNA damage, reducing mitochondrial membrane potential, promoting apoptosis, and arresting cell cycle in the S phase. Moreover, GP activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling (cGAS-STING) pathway, enhancing antigen presentation and fostering robust anti-tumor immune responses. In mouse models of pancreatic and breast cancer, GP significantly inhibits tumor growth and triggers strong innate immune activation. By combining GP with anti-PD-1 therapy, immunotherapy-resistant tumors are rendered responsive, leading to a pronounced suppression of tumor growth. Overall, GP not only amplifies the DNA-damaging effects of platinum(II) drugs but also elicits durable immune responses, establishing itself as a promising chemo-immune-combined strategy for treating pancreatic and breast cancers.</div></div>\",\"PeriodicalId\":51022,\"journal\":{\"name\":\"Drug Resistance Updates\",\"volume\":\"81 \",\"pages\":\"Article 101252\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Resistance Updates\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1368764625000536\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1368764625000536","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A novel platinum(IV) prodrug, gramine-Pt(IV) enhances chemoimmunotherapy by activating cGAS-STING and modulating TGF-β-MHC-I axis
Platinum(II) (Pt(II)) drugs, such as cisplatin and oxaliplatin, played critical roles in cancer therapy; however, their efficacy is often limited by significant toxicity and the development of drug resistance. Recently, multi-target platinum(IV) (Pt(IV)) complexes, particularly those optimized with axial ligands, have emerged as promising alternatives enhancing tumor selectivity and drug stability. In this study, we synthesized a series of novel platinum(IV) prodrugs, gramine-platinum(IV), by incorporating gramine—a natural indole alkaloid that antagonizes TGF-β receptors I and II to inhibit the TGF-β signaling pathway—as an axial ligand. Among them, compound 8 (referred to as GP) was screened out to have the best antitumor activity. GP not only enhances the therapeutic efficacy of platinum(II) drugs but also targets TGF-β signaling. Our findings demonstrate that GP rapidly enters cells and preferentially accumulates in critical subcellular compartments, such as the nucleus and mitochondria, significantly amplifying its therapeutic impact. Notably, GP exhibits great tumor accumulation compared to cisplatin and oxaliplatin, with minimal uptake in normal tissues, highlighting its superior tumor specificity with reduced systemic toxicity. This unique characteristic enables GP to enhance therapeutic efficiency through multiple modalities, including strengthening DNA damage, reducing mitochondrial membrane potential, promoting apoptosis, and arresting cell cycle in the S phase. Moreover, GP activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling (cGAS-STING) pathway, enhancing antigen presentation and fostering robust anti-tumor immune responses. In mouse models of pancreatic and breast cancer, GP significantly inhibits tumor growth and triggers strong innate immune activation. By combining GP with anti-PD-1 therapy, immunotherapy-resistant tumors are rendered responsive, leading to a pronounced suppression of tumor growth. Overall, GP not only amplifies the DNA-damaging effects of platinum(II) drugs but also elicits durable immune responses, establishing itself as a promising chemo-immune-combined strategy for treating pancreatic and breast cancers.
期刊介绍:
Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation.
Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective.
*Expert reviews in clinical and basic drug resistance research in oncology and infectious disease
*Describes emerging technologies and therapies, particularly those that overcome drug resistance
*Emphasises common themes in microbial and cancer research