Journal of The Electrochemical Society最新文献

筛选
英文 中文
Parameter Regression for Porous Electrodes Employed in Lithium-Ion Batteries and Application to Ni0.89Co0.05Mn0.05Al0.01O2 锂离子电池中多孔电极的参数回归及在 Ni0.89Co0.05Mn0.05Al0.01O2 中的应用
Journal of The Electrochemical Society Pub Date : 2024-07-15 DOI: 10.1149/1945-7111/ad6379
Daniel R. Baker, Mark W. Verbrugge, Brian J Koch
{"title":"Parameter Regression for Porous Electrodes Employed in Lithium-Ion Batteries and Application to Ni0.89Co0.05Mn0.05Al0.01O2","authors":"Daniel R. Baker, Mark W. Verbrugge, Brian J Koch","doi":"10.1149/1945-7111/ad6379","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6379","url":null,"abstract":"\u0000 We developed a parameter regression scheme that can be used with battery models of interest to the battery-analysis community. We show that the recent reduced order model (ROM1, 2022 J. Electrochem. 169 070520, DOI: 10.1149/1945-7111/ac7c93), which is based on a perturbation solution, can be used in place of the full system of nonlinear partial differential equations with minimal loss of accuracy for the conditions of this work, which are relevant for electric vehicle applications. The use of the computationally efficient ROM1, cast in the Python programming language, along with a routine native to Python for the nonlinear regression of model parameters through the minimization of the squared differences between experimental results and model calculations, provides a fast method for the overall endeavor. We applied the procedure to examine Ni0.89Co0.05Mn0.05Al0.01O2, a high-capacity material that is of increasing interest with respect to electric vehicles and other products that rely on batteries of high energy density. Difficulties encountered in this work include the large number of parameters governing the battery model, parameter sensitivity in the regression analyses, and the potential for multiple solutions. We close this publication with a discussion of these challenges and open questions with respect to parameter identification.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141647470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Different Amounts of Lithium Plating on the Thermal Safety of Lithium Ion Cells 不同镀锂量对锂离子电池热安全性的影响
Journal of The Electrochemical Society Pub Date : 2024-07-15 DOI: 10.1149/1945-7111/ad637a
Bennet Timke, Martin Winter, P. Niehoff
{"title":"Impact of Different Amounts of Lithium Plating on the Thermal Safety of Lithium Ion Cells","authors":"Bennet Timke, Martin Winter, P. Niehoff","doi":"10.1149/1945-7111/ad637a","DOIUrl":"https://doi.org/10.1149/1945-7111/ad637a","url":null,"abstract":"\u0000 Safety tests are usually conducted on fresh cells. However, occurring lithium plating for example due to harsh aging conditions or electrode inhomogeneities can negatively affect the thermal properties of cells over their lifespan. Recent literature studies showed serious deterioration of the thermal cell properties due to lithium plating while other studies showed no impact at all. These differences are at least partly explained by different amounts of metallic lithium. Here, the impact of the amount of lithium plating on the thermal cell properties was investigated. 1 Ah LiNi0.8Co0.1Mn0.1O2 (NMC811) || artificial graphite pouch cells were aged at 0 °C between zero and ten cycles. The amount of lithium plating was found to influence the self-heating-rates reached during the initial phase of a thermal safety experiment, but did not have a major impact on the safety at higher temperatures. Despite the presence of lithium plating of up to 15% of the initial capacity, none of the cells showed exothermic self-heating for more than three consecutive measuring points below 85 °C. An impact on the onset temperature of first permanent exothermic reactions could only be reliably detected if a cell had already suffered from 10 % capacity loss due to lithium plating.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Cathode Calendering Density on the Cycling Stability of Li-Ion Batteries Using NMC811 Single or Poly Crystalline Particles 阴极压延密度对使用 NMC811 单晶或多晶颗粒的锂离子电池循环稳定性的影响
Journal of The Electrochemical Society Pub Date : 2024-07-15 DOI: 10.1149/1945-7111/ad6378
Kumar Raju, Laura Wheatcroft, May Ching Lai, Amoghavarsha Mahadevegowda, Louis F. J. Piper, Caterina Ducati, Beverley Inkson, M. Volder
{"title":"Influence of Cathode Calendering Density on the Cycling Stability of Li-Ion Batteries Using NMC811 Single or Poly Crystalline Particles","authors":"Kumar Raju, Laura Wheatcroft, May Ching Lai, Amoghavarsha Mahadevegowda, Louis F. J. Piper, Caterina Ducati, Beverley Inkson, M. Volder","doi":"10.1149/1945-7111/ad6378","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6378","url":null,"abstract":"\u0000 Calendering of battery electrodes is a commonly used manufacturing process that enhances electrode packing density and therefore improves the volumetric energy density. While calendering is standard industrial practice, it is known to crack cathode particles, thereby increasing the electrode surface area. The latter is particularly problematic for new Ni-rich layered transition metal oxide cathodes, such as NMC811, which are known to have substantial surface-driven degradation processes. To establish appropriate calendering practices for these new cathode materials, we conducted a comparative analysis of uncalendered electrodes with electrodes that have a 35% porosity and 25% for single crystal and polycrystalline NMC811. PC cathodes show clear signs of cracking and decrease in rate capability when calendered to 25% porosity, whereas SC cathodes, achieve better cycling stability and no penalty in rate performance at these high packing densities. These findings suggest that SC cathodes should be calendered more densely, we provide a comprehensive overview of both electrochemical and material characterisation methods that corroborate why PC and SC electrodes show such different degradation behaviour. Overall, this work is important because it shows how new single-crystal cathode materials can offer additional advantages in terms of rate performance and cycling stability by calendaring them more densely","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141644661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-Solid-State Iron-Air Batteries: A Promising High-Temperature Battery Technology for Large-Scale Energy Storage 全固态铁-空气电池:有望用于大规模能源存储的高温电池技术
Journal of The Electrochemical Society Pub Date : 2024-07-12 DOI: 10.1149/1945-7111/ad6291
Hao Wang, Bingqian Sun, Cheng Peng
{"title":"All-Solid-State Iron-Air Batteries: A Promising High-Temperature Battery Technology for Large-Scale Energy Storage","authors":"Hao Wang, Bingqian Sun, Cheng Peng","doi":"10.1149/1945-7111/ad6291","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6291","url":null,"abstract":"\u0000 All-solid-state iron-air batteries (ASSIABs) offer a promising high-temperature battery technology for sustainable large-scale energy storage. However, current ASSIAB performance is insufficient to meet the application requirements, primarily due to the sluggish nature of solid-state electrochemical redox reactions. Here, we briefly describe the development of high-temperature iron-air batteries and conduct an in-depth analysis of ASSIABs, including key materials and the battery reaction mechanisms. We also discuss the current challenges of ASSIABs, suggesting possible strategies to enhance their performance. We hope that this perspective can offer valuable insights into the development of high-performance ASSIABs for large-scale energy storage applications.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141654964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved Stability of Oxysulfide Solid-State Electrolytes in Li(G3)TFSI Solvate Ionic Liquid Electrolyte 提高氧化硫固态电解质在 Li(G3)TFSI Solvate 离子液体电解质中的稳定性
Journal of The Electrochemical Society Pub Date : 2024-07-12 DOI: 10.1149/1945-7111/ad6292
Thomas A. Yersak, Yubin Zhang, Hasnain Hafiz, N. Pieczonka, Hernando J. Gonzalez Malabet, Hayden Cunningham, Mei Cai
{"title":"Improved Stability of Oxysulfide Solid-State Electrolytes in Li(G3)TFSI Solvate Ionic Liquid Electrolyte","authors":"Thomas A. Yersak, Yubin Zhang, Hasnain Hafiz, N. Pieczonka, Hernando J. Gonzalez Malabet, Hayden Cunningham, Mei Cai","doi":"10.1149/1945-7111/ad6292","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6292","url":null,"abstract":"\u0000 The performance of all solid-state batteries is limited by poor interfacial contact between active material and solid-state electrolyte (SSE) particles. Semi-solid batteries utilize a secondary electrolyte phase to wet the SSE/AM interface to improve cell performance. Solvate ionic liquids (SILs) are one class of liquid electrolytes under consideration for use in semi-solid batteries. This paper focuses on the Li(G3)TFSI SIL consisting of the bis(trifluoromethanesulfonyl)imide (TFSI-) anion coupled to a [Li(G3)]+ solvate cation. Sulfide SSEs are normally subject to nucleophilic attack by trigylme (G3), however, strong coordination of Li+ to G3 in the [Li(G3)]+ solvate cation prevents this reaction from taking place. Consequently, the stability of sulfide SSE depends on the ideal 1:1 molar ratio of G3 to TFSI, which may be difficult to maintain. We studied the chemical stability of 70Li2S·(30-x)P2S5·xP2O5 (x = 0, 2, 5, 10) (oxy)sulfide solid-state electrolyte in Li(G3)TFSI SIL. By physical measurement, UV-Vis spectroscopy, electrochemical evaluation, X-ray photoelectron spectroscopy, and first principles calculation it is shown that increased oxygen content improves the stability of SSE in various Li(G3)xTFSI (x = 1, 2, 3, 4) liquid electrolytes. The results suggest that an oxysulfide SSE + SIL semi-solid electrolyte is a good choice for future semi-solid battery designs.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141652162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Electrochemical Sensing Based on Cerium Oxide/Nitrogen-Doped Reduced Graphene Oxide for Sensitive Detection of Acetaminophen 基于氧化铈/掺氮还原石墨烯氧化物的新型电化学传感技术,用于灵敏检测对乙酰氨基酚
Journal of The Electrochemical Society Pub Date : 2024-07-12 DOI: 10.1149/1945-7111/ad6296
Xue Qi, Ziyin Wang, Honglin Yuan, Hongmin Gao, Xinshui Ren, Hua Chen, Hehua Zhang, D. Chang, Hongzhi Pan
{"title":"A Novel Electrochemical Sensing Based on Cerium Oxide/Nitrogen-Doped Reduced Graphene Oxide for Sensitive Detection of Acetaminophen","authors":"Xue Qi, Ziyin Wang, Honglin Yuan, Hongmin Gao, Xinshui Ren, Hua Chen, Hehua Zhang, D. Chang, Hongzhi Pan","doi":"10.1149/1945-7111/ad6296","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6296","url":null,"abstract":"\u0000 Acetaminophen (ACP), a common analgesic and antipyretic medication, can harm the liver when overdosed and its metabolites can contaminate the environment, so it is necessary to monitor the concentration precisely and reliably. In this work, we successfully synthesized cerium oxide/nitrogen-doped reduced graphene oxide (CeO2/N-rGO) composite nanomaterials using a one-step hydrothermal method. Using composite nanomaterials, we created an electrochemical sensing detection platform for ACP detection. The synthesized materials were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The constructed electrochemical sensor exhibits good ACP detection ability under the synergistic effect of CeO2 and N-rGO. Under optimal experimental conditions, the sensor displayed a linear range for the detection of ACP of 1~200 μM and the lowest detection limit of 0.79 μM, exhibiting outstanding selectivity, stability, and repeatability. Furthermore, the sensor was effectively applied to detect ACP in tap water samples, which offers a wide range of possible applications in actual sample testing.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141652972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Progress of Regulation Factors on the Deposition of Sodium Anodes 钠阳极沉积调节因素的最新进展
Journal of The Electrochemical Society Pub Date : 2024-07-12 DOI: 10.1149/1945-7111/ad6290
Conggu Tang, Chuyi Cai, Jindan Zhang, Feng Gao, Tao Hu, Zhu Pu, Jingzeng Weng, Mengqi Zhu
{"title":"Recent Progress of Regulation Factors on the Deposition of Sodium Anodes","authors":"Conggu Tang, Chuyi Cai, Jindan Zhang, Feng Gao, Tao Hu, Zhu Pu, Jingzeng Weng, Mengqi Zhu","doi":"10.1149/1945-7111/ad6290","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6290","url":null,"abstract":"\u0000 As the demand for portable electronic and electric vehicles increase, it is necessary to pursue batteries with longer cycle life, higher energy density, and overall better performance. Because lithium sources are limited and lithium metal is expensive, it is necessary to find alternatives. Rechargeable sodium (Na) batteries have attracted great research interest because of their high natural abundance, low cost of sodium resources, and electrochemical similarity with lithium batteries. However, despite the potential to become the next generation of energy storage, the application of sodium metal batteries is mainly hindered by sodium dendrites and \"dead\" sodium, which reduce battery coulombic efficiency, shorten battery life, and even cause safety problems. The formation of Na dendrites is mainly due to the uncontrolled Na deposition behavior of sodium ions in the absence of nucleation site regulation. Therefore, the sodium deposition is crucial to the final status of Na anodes. Here, we first analyze the growth mechanism of sodium dendrites, then review the research progress of nucleation sites on inhibiting the formation of sodium dendrites, and finally discuss the practical application of sodium batteries and the future challenges of metallic sodium anodes, hoping to stimulate more research interests of researchers.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141653392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the Temperature Dependency of Trimethyl Aluminum Assisted Atomic Surface Reduction of Li and Mn Rich NCM 研究三甲基铝辅助原子表面还原富含锂和锰的 NCM 的温度依赖性
Journal of The Electrochemical Society Pub Date : 2024-07-12 DOI: 10.1149/1945-7111/ad6293
Eliran Evenstein, Sarah Taragin, A. Saha, M. Noked, Rosy Rosy
{"title":"Investigating the Temperature Dependency of Trimethyl Aluminum Assisted Atomic Surface Reduction of Li and Mn Rich NCM","authors":"Eliran Evenstein, Sarah Taragin, A. Saha, M. Noked, Rosy Rosy","doi":"10.1149/1945-7111/ad6293","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6293","url":null,"abstract":"\u0000 Most next-generation electrode materials are prone to interfacial degradation, which eventually spreads to the bulk and impairs electrochemical performance. One promising method for reducing interfacial degradation is to surface engineer the electrode materials to form an artificial cathode electrolyte interphase as a protective layer. Nevertheless, the majority of coating techniques entail wet processes, high temperatures, or exposure to ambient conditions. These experimental conditions are only sometimes conducive and can adversely affect the material structure or composition. Therefore, we investigate the efficacy of a low-temperature, facile atomic surface reduction (ASR) using trimethylaluminum vapors as a surface modification strategy for Li and Mn-rich NCM (LMR-NCM). The results presented herein manifest that the extent of TMA-assisted ASR is temperature-dependent. All tested temperatures demonstrated improved electrochemical performance. However, ASR carried out at temperatures > 100°C was more effective in preserving the structural integrity and improving the electrochemical performance. Electrochemical testing revealed improved rate capabilities, cycling stability, and capacity retention of ASR-treated LMR-NCM. Additionally, post-cycling high-resolution scanning electron microscopy analysis verified that after extended cycling, ASR carried out at T > 100°C showed no cracks or cleavage, demonstrating the efficiency of this method in preventing surface degradation.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141655651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing Manganese Dissolution in Electrolytic Manganese Dioxide Electrodes in NaOH Electrolyte 降低电解二氧化锰电极在 NaOH 电解液中的锰溶解度
Journal of The Electrochemical Society Pub Date : 2024-07-12 DOI: 10.1149/1945-7111/ad6297
Xinsheng Wu, Jay Whitacre
{"title":"Reducing Manganese Dissolution in Electrolytic Manganese Dioxide Electrodes in NaOH Electrolyte","authors":"Xinsheng Wu, Jay Whitacre","doi":"10.1149/1945-7111/ad6297","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6297","url":null,"abstract":"\u0000 Previous attempts to enhance the stability and performance of MnO2-based cathodes for use in aqueous alkaline electrolytes, primarily KOH-based, have relied on a range of additives. This work demonstrates that the fast capacity decay of the MnO2-based cathode materials in alkaline electrolytes is mainly due to spontaneous manganese dissolution when cycling through the second-electron reaction voltage range. Reducing relative electrolyte content and using carbon materials that have a high specific surface area suppresses manganese dissolution and thus extends the cycle life of the electrode material while reducing overall battery costs. Moreover, reducing the size of the MnO2 particles and decreasing the cycling rate are found to increase manganese dissolution and negatively impact the performance of the electrode material, indicating a sensitivity to material surface area. Lastly, Fe-MnO2-based low-cost battery chemistry was also demonstrated based on the second electron reaction of the MnO2 in an electrolyte lean environment, which could be promising for grid-level energy storage.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141652949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Oxygen Vacancy Defects on the Structure and Electrochemical Behaviors of LiMn0.65Fe0.35PO4 Cathode 氧空位缺陷对 LiMn0.65Fe0.35PO4 阴极结构和电化学行为的影响
Journal of The Electrochemical Society Pub Date : 2024-07-12 DOI: 10.1149/1945-7111/ad6294
Jingpeng Zhang, Xiwen Ke, Yong Wang, Juanjuan Xue
{"title":"The Effect of Oxygen Vacancy Defects on the Structure and Electrochemical Behaviors of LiMn0.65Fe0.35PO4 Cathode","authors":"Jingpeng Zhang, Xiwen Ke, Yong Wang, Juanjuan Xue","doi":"10.1149/1945-7111/ad6294","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6294","url":null,"abstract":"\u0000 The presence of oxygen vacancy defects significantly impacts the crystal structure and electrochemical attributes of phosphate cathodes. In this investigation, LiMn0.65Fe0.35PO4 materials with varying levels of oxygen vacancy defects were synthesized via hydrogen plasma-induced reduction. It was observed that the content of oxygen vacancy defects on the crystal surface increased proportionately with the rise in hydrogen (H2) flow rate. Notably, the LMFP-3 sample, prepared with an H2 flow rate of 10 mL min-1, demonstrated superior electrochemical performance, characterized by a 159.7 mAh g-1 discharge capacity at 0.1C and a remarkable 99.8% capacity retention at 5C after 200 cycles. This enhancement in electrochemical performance is attributed to the improved intrinsic conductivity of the LiMn0.65Fe0.35PO4 material due to the presence of oxygen vacancy defects. However, it is important to note that an excessively high H2 flow rate can lead to the formation of Fe2P impurities, which hinder lithium ion (Li+) diffusion. Furthermore, theoretical calculations conducted using density functional theory provide a rational explanation for the observed improvement in electronic conductivity. The introduction of oxygen vacancy defects results in a significant reduction in the Band gap, which is highly beneficial for enhancing the intrinsic conductivity of the LiMn0.65Fe0.35PO4 materials.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141654103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信