Thomas A. Yersak, Yubin Zhang, Hasnain Hafiz, N. Pieczonka, Hernando J. Gonzalez Malabet, Hayden Cunningham, Mei Cai
{"title":"Improved Stability of Oxysulfide Solid-State Electrolytes in Li(G3)TFSI Solvate Ionic Liquid Electrolyte","authors":"Thomas A. Yersak, Yubin Zhang, Hasnain Hafiz, N. Pieczonka, Hernando J. Gonzalez Malabet, Hayden Cunningham, Mei Cai","doi":"10.1149/1945-7111/ad6292","DOIUrl":null,"url":null,"abstract":"\n The performance of all solid-state batteries is limited by poor interfacial contact between active material and solid-state electrolyte (SSE) particles. Semi-solid batteries utilize a secondary electrolyte phase to wet the SSE/AM interface to improve cell performance. Solvate ionic liquids (SILs) are one class of liquid electrolytes under consideration for use in semi-solid batteries. This paper focuses on the Li(G3)TFSI SIL consisting of the bis(trifluoromethanesulfonyl)imide (TFSI-) anion coupled to a [Li(G3)]+ solvate cation. Sulfide SSEs are normally subject to nucleophilic attack by trigylme (G3), however, strong coordination of Li+ to G3 in the [Li(G3)]+ solvate cation prevents this reaction from taking place. Consequently, the stability of sulfide SSE depends on the ideal 1:1 molar ratio of G3 to TFSI, which may be difficult to maintain. We studied the chemical stability of 70Li2S·(30-x)P2S5·xP2O5 (x = 0, 2, 5, 10) (oxy)sulfide solid-state electrolyte in Li(G3)TFSI SIL. By physical measurement, UV-Vis spectroscopy, electrochemical evaluation, X-ray photoelectron spectroscopy, and first principles calculation it is shown that increased oxygen content improves the stability of SSE in various Li(G3)xTFSI (x = 1, 2, 3, 4) liquid electrolytes. The results suggest that an oxysulfide SSE + SIL semi-solid electrolyte is a good choice for future semi-solid battery designs.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad6292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of all solid-state batteries is limited by poor interfacial contact between active material and solid-state electrolyte (SSE) particles. Semi-solid batteries utilize a secondary electrolyte phase to wet the SSE/AM interface to improve cell performance. Solvate ionic liquids (SILs) are one class of liquid electrolytes under consideration for use in semi-solid batteries. This paper focuses on the Li(G3)TFSI SIL consisting of the bis(trifluoromethanesulfonyl)imide (TFSI-) anion coupled to a [Li(G3)]+ solvate cation. Sulfide SSEs are normally subject to nucleophilic attack by trigylme (G3), however, strong coordination of Li+ to G3 in the [Li(G3)]+ solvate cation prevents this reaction from taking place. Consequently, the stability of sulfide SSE depends on the ideal 1:1 molar ratio of G3 to TFSI, which may be difficult to maintain. We studied the chemical stability of 70Li2S·(30-x)P2S5·xP2O5 (x = 0, 2, 5, 10) (oxy)sulfide solid-state electrolyte in Li(G3)TFSI SIL. By physical measurement, UV-Vis spectroscopy, electrochemical evaluation, X-ray photoelectron spectroscopy, and first principles calculation it is shown that increased oxygen content improves the stability of SSE in various Li(G3)xTFSI (x = 1, 2, 3, 4) liquid electrolytes. The results suggest that an oxysulfide SSE + SIL semi-solid electrolyte is a good choice for future semi-solid battery designs.