Journal of The Electrochemical Society最新文献

筛选
英文 中文
Binderless Electrodeposited NiCo2S4-MWCNT as a Potential Anode Material for Sodium-Ion Batteries 作为钠离子电池潜在阳极材料的无粘结剂电沉积镍钴硅烷基碳酸酯-MWCNT
Journal of The Electrochemical Society Pub Date : 2024-07-16 DOI: 10.1149/1945-7111/ad63d3
Rupan Das Chakraborty, J. P. Grace, Kiran Kumar Garlapati, S. Martha
{"title":"Binderless Electrodeposited NiCo2S4-MWCNT as a Potential Anode Material for Sodium-Ion Batteries","authors":"Rupan Das Chakraborty, J. P. Grace, Kiran Kumar Garlapati, S. Martha","doi":"10.1149/1945-7111/ad63d3","DOIUrl":"https://doi.org/10.1149/1945-7111/ad63d3","url":null,"abstract":"\u0000 Conversion type ternary NiCo2S4, exhibiting high electrical conductivity (~1.25 × 106 S m-1) and high theoretical capacity (703 mAh g-1), has gained interest as an anode material for sodium-ion batteries (SIBs). Despite its potential, NiCo2S4 (NCS) has extensive volume expansion during cycling. This study introduces the NCS-multi-walled carbon nanotube (MWCNT) onto a carbon fiber (CF) electrode (NCS and NCS-MWCNT@CF), developed through electrodeposition, which addresses these limitations. The unique sheet-like morphology of NCS, featuring abundant pores, ensures good access to the electrolyte. Incorporating a three-dimensional conductive CF framework that acts as a free-standing current collector helps prevent the agglomeration of NCS particles and mitigates volume expansion by providing enough buffer space in the layers of the CF matrix. Our findings reveal that NCS on CF electrodes deliver a second cycle capacity of 620 mA g-1 at 30 mA g-1 and retain 72 % capacity after 200 cycles. At 200 mA g-1, the NCS@CF electrodes deliver 378 mAh g-1 in the second cycle with 68% capacity retention in the 200th cycle, whereas NCS-MWCNT@CF delivers 538 mAh g-1 at 200 mA g-1, maintaining 86 % capacity after 100 cycles, making it a potential anode for SIBs.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141642241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling a High-Energy, High-Rate Li//CFx Battery with a Capacity-Contributing Electrolyte 使用容量贡献电解质的高能量、高倍率锂//CFx 电池建模
Journal of The Electrochemical Society Pub Date : 2024-07-16 DOI: 10.1149/1945-7111/ad63cc
Caitlin D. Parke, Kailot C Harris, Xiyue Zhang, Minsung Baek, Chunsheng Wang, P. Albertus
{"title":"Modeling a High-Energy, High-Rate Li//CFx Battery with a Capacity-Contributing Electrolyte","authors":"Caitlin D. Parke, Kailot C Harris, Xiyue Zhang, Minsung Baek, Chunsheng Wang, P. Albertus","doi":"10.1149/1945-7111/ad63cc","DOIUrl":"https://doi.org/10.1149/1945-7111/ad63cc","url":null,"abstract":"\u0000 Li//CFx cells have achieved the highest specific energy of commercial batteries, but new applications requiring higher rates (e.g., C/3) and pulsing (e.g., at 5C/3 rate for 1 min) drive the push for higher energy and power densities. A capacity-contributing electrolyte (CCE) can provide additional capacity at a slightly lower potential than the CFx reaction, increasing cell specific energy. In this work we present a 0D transient model of a primary Li/CFx cell with a CCE composed of both a salt and solvent that provide capacity with a focus on a C/3 rate and pulsing. Novel aspects of our model, in addition to the two CCE reactions, include a variable cathode thickness and porosity (CFx cathode thickness has been measured to expand by >40% at 25°C) and a detailed presentation of the transient evolution of all species and terms that contribute to cell potential (including how salt and solvent reactions affect ionic polarization and the growth of solid-phase product resistances). Our work quantifies the delicate balance of thermodynamic, kinetic, and transport processes and properties that is needed to obtain specific energy enhancements from CCE reactions, and how changing cathode thickness and porosity affect the mechanisms that cause the end of discharge.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141643906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimum Model-Based Design of Diagnostics Experiments (DOE) with Hybrid Pulse Power Characterization (HPPC) for Lithium-Ion Batteries 基于模型的锂离子电池诊断实验 (DOE) 优化设计与混合脉冲功率特性分析 (HPPC)
Journal of The Electrochemical Society Pub Date : 2024-07-16 DOI: 10.1149/1945-7111/ad63ce
Jinwook Rhyu, D. Zhuang, M. Bazant, R. D. Braatz
{"title":"Optimum Model-Based Design of Diagnostics Experiments (DOE) with Hybrid Pulse Power Characterization (HPPC) for Lithium-Ion Batteries","authors":"Jinwook Rhyu, D. Zhuang, M. Bazant, R. D. Braatz","doi":"10.1149/1945-7111/ad63ce","DOIUrl":"https://doi.org/10.1149/1945-7111/ad63ce","url":null,"abstract":"\u0000 Diagnostics of lithium-ion batteries are frequently performed in battery management systems for optimized operation of lithium-ion batteries or for second-life usage. However, attempting to extract dominant degradation information requires long rest times between diagnostic pulses, which compete with the need for efficient diagnostics. Here, we design a set of efficient optimal hybrid pulse power characterization (HPPC) diagnostics using model-based design of experiment (DOE) methods, applying knowledge of degradation effects on pulse kinetics and cell properties. We validate that these protocols are effective through minimization of uncertainty, and robust with Markov Chain Monte Carlo (MCMC) simulations. Contrary to traditional HPPC diagnostics which use fixed pulse magnitudes at uniformly distributed state of charges (SOC), we find that well-designed HPPC protocols using our framework outperform traditional protocols in terms of minimizing both parametric uncertainties and diagnostic time. Trade-offs between minimizing parametric uncertainty and total diagnostic time can be made based on different diagnostics needs.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141643050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing Cold Sintering to Fabricate Composite Polymer Electrolytes - A Paradigm Shift in Organic-Inorganic Material Assembly 利用冷烧结技术制造复合聚合物电解质--有机-无机材料组装的范式转变
Journal of The Electrochemical Society Pub Date : 2024-07-16 DOI: 10.1149/1945-7111/ad63cd
Agathe Naboulsi, Thibaut Dussart, Sylvain Franger, Odile Fichet, Giao Nguyen, C. Laberty‐Robert
{"title":"Harnessing Cold Sintering to Fabricate Composite Polymer Electrolytes - A Paradigm Shift in Organic-Inorganic Material Assembly","authors":"Agathe Naboulsi, Thibaut Dussart, Sylvain Franger, Odile Fichet, Giao Nguyen, C. Laberty‐Robert","doi":"10.1149/1945-7111/ad63cd","DOIUrl":"https://doi.org/10.1149/1945-7111/ad63cd","url":null,"abstract":"\u0000 The development of composite electrolytes for all-solid-state batteries is an emerging field, but the creation of predominantly inorganic electrolytes remains challenging. In this study, Li6.25Al0.25La3Zr2O12 (Al-LLZO), a ceramic material selected for its high ionic conductivity (1x104 S.cm-1 at ambient temperature) was shaped by the cold-sintering process (CSP). The organic phase was synthesized by free-radical polymerization of two poly(ethylene oxide) methacrylate derivatives in the presence of lithium bis(trifluoromethanesulfonyl)imide salts (LiTFSI). The polymethacrylate network with dangling poly(ethylene oxide) (PEO) chains was thus obtained. This in-situ polymerization allows the one-pot synthesis of the composite electrolyte during CSP. Remarkably, the ionic conductivity of the CSP pellet varied with the nature of the organic phase, ranging from 1x10−4 to 1x10−5 S.cm-1 for non-grafted and grafted TFSI anion on the PEO-based network, respectively. Additionally, the transport of Li+ remained unaffected by the inorganic material's nature as long as it contained Li species. Furthermore, a significant enhancement of the ionic conductivity was observed in the composite pellet compared to the TFSI grafted network (10−5 to 10−7 S.cm-1, respectively). Electrochemical impedance spectroscopy measurements revealed changes in the Al-LLZOPEO-based polymer interface during CSP with the formation of an interphase, confirmed by a low activation energy value (0.1 eV).","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141641478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mild and Fast Chemical Presodiation of Na0.44MnO2 Na0.44MnO2 的温和快速化学预阳极化
Journal of The Electrochemical Society Pub Date : 2024-07-16 DOI: 10.1149/1945-7111/ad63d1
R. Kapaev, S. Chakrabarty, Ayan Mukherjee, Masato Sonoo, M. Noked
{"title":"Mild and Fast Chemical Presodiation of Na0.44MnO2","authors":"R. Kapaev, S. Chakrabarty, Ayan Mukherjee, Masato Sonoo, M. Noked","doi":"10.1149/1945-7111/ad63d1","DOIUrl":"https://doi.org/10.1149/1945-7111/ad63d1","url":null,"abstract":"\u0000 This work presents a mild, fast, and scalable approach for chemical presodiation of Na-ion battery cathodes employing a tunnel-type Na0.44MnO2 (NMO) as a model material to demonstrate its sodiation with sodium-phanazine solutions. After presodiation using this approach, there is an 80% increase in specific capacity and a 66% increase in specific energy of NMO in full cells with hard carbon anodes.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141641582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile Synthesis of U2Ti Intermetallic by Direct Electrochemical Reduction of UO2-TiO2 Composite in LiCl-Li2O Melt 在 LiCl-Li2O 熔体中通过直接电化学还原 UO2-TiO2 复合材料轻松合成 U2Ti 金属间化合物
Journal of The Electrochemical Society Pub Date : 2024-07-16 DOI: 10.1149/1945-7111/ad63d2
Sanil N, Shakila L, Arunkumar V, Kumaresan Radhakrishnan
{"title":"Facile Synthesis of U2Ti Intermetallic by Direct Electrochemical Reduction of UO2-TiO2 Composite in LiCl-Li2O Melt","authors":"Sanil N, Shakila L, Arunkumar V, Kumaresan Radhakrishnan","doi":"10.1149/1945-7111/ad63d2","DOIUrl":"https://doi.org/10.1149/1945-7111/ad63d2","url":null,"abstract":"\u0000 Alloys of U with Ti are of importance in nuclear industry as fuel for Gen IV fast reactors, hydrogen isotope storage medium for fusion reactors, super conductors, and also as corrosion resistant material for use in various applications. Here, preparation of U2Ti intermetallic compound was investigated by the direct electrochemical reduction of mixed oxide of UO2-TiO2 in LiCl-0.5% Li2O molten salt at 650oC. The mixed oxide pellet of UO2-TiO2 sintered at 1500oC was found to be a mixture of UTi2O6 and UO2 as evidenced by X-ray diffraction (XRD) analysis. Direct electro-lithiothermic reduction of UO2, TiO2, and a mixture of sintered UO2-TiO2 and UTi2O6 coupled with cyclic voltammetry of these oxides in the melt was performed to understand the electro-reduction mechanism. Potentials of reduction of these oxides in the melt, w.r.t Ni/NiO reference electrode, obtained by analysis of CV data of these oxides contained in metallic cavity electrodes and XRD analysis of partially electro-reduced oxides were used to arrive at the electro-reduction mechanism. Results indicate that U2Ti can be prepared conveniently by the electro-lithiothermic reduction of sintered pellet of UO2-TiO2 cathode by constant current electrolysis in a two-electrode cell.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141642235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Performance Evaluation of Microporous Transport Layers for Proton Exchange Membrane (PEM) Water Electrolyzer Anodes 质子交换膜 (PEM) 水电解槽阳极微孔传输层的制备与性能评估
Journal of The Electrochemical Society Pub Date : 2024-07-16 DOI: 10.1149/1945-7111/ad63cf
M. F. Ernst, Vivian Meier, Matthias Kornherr, H. Gasteiger
{"title":"Preparation and Performance Evaluation of Microporous Transport Layers for Proton Exchange Membrane (PEM) Water Electrolyzer Anodes","authors":"M. F. Ernst, Vivian Meier, Matthias Kornherr, H. Gasteiger","doi":"10.1149/1945-7111/ad63cf","DOIUrl":"https://doi.org/10.1149/1945-7111/ad63cf","url":null,"abstract":"\u0000 In this work, ≈25 µm thin titanium microporous layers (MPLs) with ≈2 µm small pores and low surface roughness were coated and sintered on top of ≈260 µm thick commercial titanium-powder-sinter sheets with ≈16 µm pores, maintaining a porosity of ≈40% in both layers. Serving as porous transport layers (PTLs) on the anode side in proton exchange membrane water electrolyzers (PEMWEs), these pore-graded, two-layer sheets (“PTL/MPL”) are compared to single-layer PTLs in single-cell PEMWEs. The PTL/MPL samples prepared here give a 3-6 mΩ cm² lower high-frequency resistance (HFR) compared to the as-received single-layer PTL, which is attributed to a partial reduction of the TiO2 surface passivation layer during the MPL sintering process. For ≈1 µm thin anodes with an iridium loading of ≈0.2 mgIr cm-2, the use of an MPL leads to a ≈24 mV improvement in HFR-free cell voltage at 6 A cm-2. As no such benefit is observed for ≈9 µm thick anodes with ≈2.0 mgIr cm 2, mass transport resistances within the PTL/MPL play a minor role. Possible reasons for the higher catalyst utilization in ultra-thin electrodes when using an MPL are discussed. Furthermore, an MPL provides superior mechanical membrane support, which is particularly relevant for thin membrane","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141642694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating Plastic Deformation Between Silicon and Solid Electrolyte in All-Solid-State Batteries Using Operando X-ray Tomography 利用 Operando X 射线断层扫描研究全固态电池中硅与固体电解质之间的塑性变形
Journal of The Electrochemical Society Pub Date : 2024-07-16 DOI: 10.1149/1945-7111/ad63d0
Yuya Sakka, Mao Matsumoto, H. Yamashige, Akihisa Takeuchi, M. Uesugi, K. Uesugi, Chengchao Zhong, Keiji Shimoda, Ken'ichi Okazaki, Yuki Orikasa
{"title":"Investigating Plastic Deformation Between Silicon and Solid Electrolyte in All-Solid-State Batteries Using Operando X-ray Tomography","authors":"Yuya Sakka, Mao Matsumoto, H. Yamashige, Akihisa Takeuchi, M. Uesugi, K. Uesugi, Chengchao Zhong, Keiji Shimoda, Ken'ichi Okazaki, Yuki Orikasa","doi":"10.1149/1945-7111/ad63d0","DOIUrl":"https://doi.org/10.1149/1945-7111/ad63d0","url":null,"abstract":"\u0000 Si anodes in all-solid-state batteries are expected to achieve high energy density and durability because large volume changes in Si can be mechanically suppressed by the hardness of solid electrolytes. However, the effects of volume changes on the mechanical interface between Si and solid electrolytes during charge/discharge reactions have not been investigated. In this study, operando X-ray computed tomography was used to determine the microstructure of an all-solid-state battery comprising Si active materials and a solid sulfide electrolyte, Li10GeP2S12, during charge/discharge reactions. To evaluate the volume expansion/contraction effects on the charge/discharge properties, the tortuosity of the ion conduction path and the contact area fraction between Si and the solid electrolyte during the charge/discharge reactions were quantitatively estimated. Shell-shaped voids around the Si particles were observed after Si shrinkage owing to the plastic deformation of the solid electrolyte. This characteristic resulted in poor charge/discharge efficiency and incomplete delithiation in the battery. These results will facilitate the design optimization of Si composite electrodes, which will be highly beneficial to the development of effective all-solid-state batteries.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141641556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A First-Principles Study on the Anchoring Properties of Defective Single-Walled Carbon Nanotubes for Lithium-Sulfur Batteries 关于用于锂硫电池的缺陷单壁碳纳米管锚定特性的第一性原理研究
Journal of The Electrochemical Society Pub Date : 2024-07-15 DOI: 10.1149/1945-7111/ad6377
Tianjiao Zhu, Xiaoqian Hao, Yongan Cao, Yuqian Li, Wenju Wang
{"title":"A First-Principles Study on the Anchoring Properties of Defective Single-Walled Carbon Nanotubes for Lithium-Sulfur Batteries","authors":"Tianjiao Zhu, Xiaoqian Hao, Yongan Cao, Yuqian Li, Wenju Wang","doi":"10.1149/1945-7111/ad6377","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6377","url":null,"abstract":"\u0000 The application of lithium-sulfur (Li-S) batteries is impeded by the significant polysulfide shuttling phenomenon. Developing suitable anchoring material is an effective way to restrain this behavior. In this work, the anchoring performance of lithium polysulfide (LiPSs) on defective single-wall carbon nanotubes (DSWNT) is investigated by density functional theory. The results demonstrate that the DSWNT with three carbon vacancies (DSWNT-3) has the highest forming capacity and the strongest adsorption capacity, indicating it has the best anchoring effect of LiPSs. As the anchoring material of the cathode, DSWNT-3 has greater energy than solvent molecules to inhibit the dissolution of long-chain polysulfides. In general, DSWNT-3 demonstrates notable efficacy as an anchoring material for Li-S batteries, which establishes a theoretical foundation for exploring the anchoring characteristics of defects and their application in the cathode of Li-S batteries.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141644777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significant Improvements to Si Calendar Lifetime Using Rapid Electrolyte Screening via Potentiostatic Holds 通过恒电位快速筛选电解质,显著提高硅日历寿命
Journal of The Electrochemical Society Pub Date : 2024-07-15 DOI: 10.1149/1945-7111/ad6376
Ankit Verma, Maxwell C. Schulze, Andrew M. Colclasure, Marco-Tulio F. Rodrigues, S. Trask, Krzysztof Pupek, Daniel P Abraham
{"title":"Significant Improvements to Si Calendar Lifetime Using Rapid Electrolyte Screening via Potentiostatic Holds","authors":"Ankit Verma, Maxwell C. Schulze, Andrew M. Colclasure, Marco-Tulio F. Rodrigues, S. Trask, Krzysztof Pupek, Daniel P Abraham","doi":"10.1149/1945-7111/ad6376","DOIUrl":"https://doi.org/10.1149/1945-7111/ad6376","url":null,"abstract":"\u0000 Silicon-based lithium-ion batteries exhibit severe time-based degradation resulting in poor calendar lives. This has been identified as the major impediment towards commercialization with cycle life considered a solved issue through nanosizing and protective coatings allowing over 1000 cycles of life to be achieved. In this work, rapid screening of sixteen electrolytes for calendar life extension of Si-rich systems (70 wt% Si) is performed using the voltage hold (V-hold) protocol. V-hold significantly shortens the testing duration over the traditional open circuit voltage reference performance test allowing us to screen electrolytes within a span of two months. We find a novel ethylene carbonate (EC) free electrolyte formulation containing lithium hexafluorophosphate (LiPF6) salt, and binary solvent mix of fluoroethylene carbonate, ethyl methyl carbonate that extends calendar life of Si cells as compared to conventional EC based electrolyte. Our coupled experimental-theoretical analysis framework provides a decoupling of the parasitic currents during V-hold, allowing us to extrapolate the capacity loss to predict semiquantitative calendar lifetimes. Subsequently, cycle aging and oxidative stability tests of the EC free system also show enhanced performance over baseline electrolyte.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141649382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信