Ankit Verma, Maxwell C. Schulze, Andrew M. Colclasure, Marco-Tulio F. Rodrigues, S. Trask, Krzysztof Pupek, Daniel P Abraham
{"title":"Significant Improvements to Si Calendar Lifetime Using Rapid Electrolyte Screening via Potentiostatic Holds","authors":"Ankit Verma, Maxwell C. Schulze, Andrew M. Colclasure, Marco-Tulio F. Rodrigues, S. Trask, Krzysztof Pupek, Daniel P Abraham","doi":"10.1149/1945-7111/ad6376","DOIUrl":null,"url":null,"abstract":"\n Silicon-based lithium-ion batteries exhibit severe time-based degradation resulting in poor calendar lives. This has been identified as the major impediment towards commercialization with cycle life considered a solved issue through nanosizing and protective coatings allowing over 1000 cycles of life to be achieved. In this work, rapid screening of sixteen electrolytes for calendar life extension of Si-rich systems (70 wt% Si) is performed using the voltage hold (V-hold) protocol. V-hold significantly shortens the testing duration over the traditional open circuit voltage reference performance test allowing us to screen electrolytes within a span of two months. We find a novel ethylene carbonate (EC) free electrolyte formulation containing lithium hexafluorophosphate (LiPF6) salt, and binary solvent mix of fluoroethylene carbonate, ethyl methyl carbonate that extends calendar life of Si cells as compared to conventional EC based electrolyte. Our coupled experimental-theoretical analysis framework provides a decoupling of the parasitic currents during V-hold, allowing us to extrapolate the capacity loss to predict semiquantitative calendar lifetimes. Subsequently, cycle aging and oxidative stability tests of the EC free system also show enhanced performance over baseline electrolyte.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad6376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon-based lithium-ion batteries exhibit severe time-based degradation resulting in poor calendar lives. This has been identified as the major impediment towards commercialization with cycle life considered a solved issue through nanosizing and protective coatings allowing over 1000 cycles of life to be achieved. In this work, rapid screening of sixteen electrolytes for calendar life extension of Si-rich systems (70 wt% Si) is performed using the voltage hold (V-hold) protocol. V-hold significantly shortens the testing duration over the traditional open circuit voltage reference performance test allowing us to screen electrolytes within a span of two months. We find a novel ethylene carbonate (EC) free electrolyte formulation containing lithium hexafluorophosphate (LiPF6) salt, and binary solvent mix of fluoroethylene carbonate, ethyl methyl carbonate that extends calendar life of Si cells as compared to conventional EC based electrolyte. Our coupled experimental-theoretical analysis framework provides a decoupling of the parasitic currents during V-hold, allowing us to extrapolate the capacity loss to predict semiquantitative calendar lifetimes. Subsequently, cycle aging and oxidative stability tests of the EC free system also show enhanced performance over baseline electrolyte.