{"title":"The Effect of Oxygen Vacancy Defects on the Structure and Electrochemical Behaviors of LiMn0.65Fe0.35PO4 Cathode","authors":"Jingpeng Zhang, Xiwen Ke, Yong Wang, Juanjuan Xue","doi":"10.1149/1945-7111/ad6294","DOIUrl":null,"url":null,"abstract":"\n The presence of oxygen vacancy defects significantly impacts the crystal structure and electrochemical attributes of phosphate cathodes. In this investigation, LiMn0.65Fe0.35PO4 materials with varying levels of oxygen vacancy defects were synthesized via hydrogen plasma-induced reduction. It was observed that the content of oxygen vacancy defects on the crystal surface increased proportionately with the rise in hydrogen (H2) flow rate. Notably, the LMFP-3 sample, prepared with an H2 flow rate of 10 mL min-1, demonstrated superior electrochemical performance, characterized by a 159.7 mAh g-1 discharge capacity at 0.1C and a remarkable 99.8% capacity retention at 5C after 200 cycles. This enhancement in electrochemical performance is attributed to the improved intrinsic conductivity of the LiMn0.65Fe0.35PO4 material due to the presence of oxygen vacancy defects. However, it is important to note that an excessively high H2 flow rate can lead to the formation of Fe2P impurities, which hinder lithium ion (Li+) diffusion. Furthermore, theoretical calculations conducted using density functional theory provide a rational explanation for the observed improvement in electronic conductivity. The introduction of oxygen vacancy defects results in a significant reduction in the Band gap, which is highly beneficial for enhancing the intrinsic conductivity of the LiMn0.65Fe0.35PO4 materials.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad6294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of oxygen vacancy defects significantly impacts the crystal structure and electrochemical attributes of phosphate cathodes. In this investigation, LiMn0.65Fe0.35PO4 materials with varying levels of oxygen vacancy defects were synthesized via hydrogen plasma-induced reduction. It was observed that the content of oxygen vacancy defects on the crystal surface increased proportionately with the rise in hydrogen (H2) flow rate. Notably, the LMFP-3 sample, prepared with an H2 flow rate of 10 mL min-1, demonstrated superior electrochemical performance, characterized by a 159.7 mAh g-1 discharge capacity at 0.1C and a remarkable 99.8% capacity retention at 5C after 200 cycles. This enhancement in electrochemical performance is attributed to the improved intrinsic conductivity of the LiMn0.65Fe0.35PO4 material due to the presence of oxygen vacancy defects. However, it is important to note that an excessively high H2 flow rate can lead to the formation of Fe2P impurities, which hinder lithium ion (Li+) diffusion. Furthermore, theoretical calculations conducted using density functional theory provide a rational explanation for the observed improvement in electronic conductivity. The introduction of oxygen vacancy defects results in a significant reduction in the Band gap, which is highly beneficial for enhancing the intrinsic conductivity of the LiMn0.65Fe0.35PO4 materials.