Advances in GeneticsPub Date : 2024-01-01Epub Date: 2024-02-15DOI: 10.1016/bs.adgen.2024.01.001
Ildus I Ahmetov, George John, Ekaterina A Semenova, Elliott C R Hall
{"title":"Genomic predictors of physical activity and athletic performance.","authors":"Ildus I Ahmetov, George John, Ekaterina A Semenova, Elliott C R Hall","doi":"10.1016/bs.adgen.2024.01.001","DOIUrl":"10.1016/bs.adgen.2024.01.001","url":null,"abstract":"<p><p>Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sleep regulation and host genetics.","authors":"Adrián Odriozola, Adriana González, Jesús Álvarez-Herms, Francesc Corbi","doi":"10.1016/bs.adgen.2024.02.002","DOIUrl":"10.1016/bs.adgen.2024.02.002","url":null,"abstract":"<p><p>Due to the multifactorial and complex nature of rest, we focus on phenotypes related to sleep. Sleep regulation is a multifactorial process. In this chapter, we focus on those phenotypes inherent to sleep that are highly prevalent in the population, and that can be modulated by lifestyle, such as sleep quality and duration, insomnia, restless leg syndrome and daytime sleepiness. We, therefore, leave in the background those phenotypes that constitute infrequent pathologies or for which the current level of scientific evidence does not favour the implementation of practical approaches of this type. Similarly, the regulation of sleep quality is intimately linked to the regulation of the circadian rhythm. Although this relationship is discussed in the sections that require it, the in-depth study of circadian rhythm regulation at the molecular level deserves a separate chapter, and this is how it is dealt with in this volume.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in GeneticsPub Date : 2024-01-01Epub Date: 2024-09-20DOI: 10.1016/bs.adgen.2024.08.001
Iker Badiola
{"title":"What we need in colorectal cancer research, and why?","authors":"Iker Badiola","doi":"10.1016/bs.adgen.2024.08.001","DOIUrl":"https://doi.org/10.1016/bs.adgen.2024.08.001","url":null,"abstract":"<p><p>Cancer is a complex disease that includes tumour and healthy cells surrounding and infiltrating the tumour. During cancer development, tumour cells release many extracellular signals in an autocrine and paracrine way, producing deep phenotypic changes in the surrounding cells, becoming protumoral actors. The entire entity composed of tumour cells and the recruited elements is known as the tumour microenvironment. Immune cells, fibroblasts and endothelial cells, mainly with the extracellular matrix, are the most common elements in different cancer types and coexist in a complex balance of protumoral and antitumoral factors. In this context, the spatial disposition of the tumour microenvironment elements is crucial to knowing the role of each one in the disease development, and the multiplex spatial technology is the way to map the tumours. The combination of spatial study with transcriptomic, proteomic, and epigenomic studies is the most modern tool in the hands of cancer researchers, and it has opened a new era in the study of cancer biology.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Techniques, procedures, and applications in microbiome analysis.","authors":"Adriana González, Asier Fullaondo, Adrián Odriozola","doi":"10.1016/bs.adgen.2024.01.003","DOIUrl":"10.1016/bs.adgen.2024.01.003","url":null,"abstract":"<p><p>Microbiota is a complex community of microorganisms living in a defined environment. Until the 20th century, knowledge of microbiota was partial, as the techniques available for their characterization were primarily based on bacteriological culture. In the last twenty years, the development of DNA sequencing technologies, multi-omics, and bioinformatics has expanded our understanding of microorganisms. We have moved from mainly considering them isolated disease-causing agents to recognizing the microbiota as an essential component of host biology. These techniques have shown that the microbiome plays essential roles in various host phenotypes, influencing development, physiology, reproduction, and evolution. This chapter provides researchers with a summary of the primary concepts, sample collection, experimental techniques, and bioinformatics analysis commonly used in microbiome research. The main features, applications in microbiome studies, and their advantages and limitations are included in each section.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in GeneticsPub Date : 2024-01-01Epub Date: 2024-06-08DOI: 10.1016/bs.adgen.2024.01.002
Jesús Álvarez-Herms, Adrián Odriozola
{"title":"Microbiome and physical activity.","authors":"Jesús Álvarez-Herms, Adrián Odriozola","doi":"10.1016/bs.adgen.2024.01.002","DOIUrl":"10.1016/bs.adgen.2024.01.002","url":null,"abstract":"<p><p>Regular physical activity promotes health benefits and contributes to develop the individual biological potential. Chronical physical activity performed at moderate and high-intensity is the intensity more favorable to produce health development in athletes and improve the gut microbiota balance. The athletic microbiome is characterized by increased microbial diversity and abundance as well as greater phenotypic versatility. In addition, physical activity and microbiota composition have bidirectional effects, with regular physical activity improving microbial composition and microbial composition enhancing physical performance. The improvement of physical performance by a healthy microbiota is related to different phenotypes: i) efficient metabolic development, ii) improved regulation of intestinal permeability, iii) favourable modulation of local and systemic inflammatory and efficient immune responses, iv) efective regulation of systemic pH and, v) protection against acute stressful events such as environmental exposure to altitude or heat. The type of sport, both intensity or volume characteristics promote microbiota specialisation. Individual assessment of the state of the gut microbiota can be an effective biomarker for monitoring health in the medium to long term. The relationship between the microbiota and the rest of the body is bidirectional and symbiotic, with a full connection between the systemic functions of the nervous, musculoskeletal, endocrine, metabolic, acid-base and immune systems. In addition, circadian rhythms, including regular physical activity, directly influence the adaptive response of the microbiota. In conclusion, regular stimuli of moderate- and high-intensity physical activity promote greater diversity, abundance, resilience and versatility of the gut microbiota. This effect is highly beneficial for human health when healthy lifestyle habits including nutrition, hydration, rest, chronoregulation and physical activity.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in GeneticsPub Date : 2024-01-01Epub Date: 2024-07-25DOI: 10.1016/bs.adgen.2024.05.002
Adriana González, Asier Fullaondo, Adrian Odriozola
{"title":"Microbiota-associated mechanisms in colorectal cancer.","authors":"Adriana González, Asier Fullaondo, Adrian Odriozola","doi":"10.1016/bs.adgen.2024.05.002","DOIUrl":"https://doi.org/10.1016/bs.adgen.2024.05.002","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Host genetics and nutrition.","authors":"Adrián Odriozola, Adriana González, Jesús Álvarez-Herms, Francesc Corbi","doi":"10.1016/bs.adgen.2024.03.001","DOIUrl":"10.1016/bs.adgen.2024.03.001","url":null,"abstract":"<p><p>Optimal nutrition is essential for health and physiological performance. Nutrition-related diseases such as obesity and diabetes are major causes of death and reduced quality of life in modern Western societies. Thanks to combining nutrigenetics and nutrigenomics, genomic nutrition allows the study of the interaction between nutrition, genetics and physiology. Currently, interrelated multi-genetic and multifactorial phenotypes are studied from a multiethnic and multi-omics approach, step by step identifying the important role of pathways, in addition to those directly related to metabolism. It allows the progressive identification of genetic profiles associated with specific susceptibilities to diet-related phenotypes, which may facilitate individualised dietary recommendations to improve health and quality of life.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in GeneticsPub Date : 2024-01-01Epub Date: 2024-09-26DOI: 10.1016/bs.adgen.2024.08.006
Adriana González, Asier Fullaondo, Iñaki Odriozola, Adrian Odriozola
{"title":"Microbiota and other detrimental metabolites in colorectal cancer.","authors":"Adriana González, Asier Fullaondo, Iñaki Odriozola, Adrian Odriozola","doi":"10.1016/bs.adgen.2024.08.006","DOIUrl":"https://doi.org/10.1016/bs.adgen.2024.08.006","url":null,"abstract":"<p><p>Increasing scientific evidence demonstrates that gut microbiota plays an essential role in the onset and development of Colorectal cancer (CRC). However, the mechanisms by which these microorganisms contribute to cancer development are complex and far from completely clarified. Specifically, the impact of gut microbiota-derived metabolites on CRC is undeniable, exerting both protective and detrimental effects. This paper examines the effects and mechanisms by which important bacterial metabolites exert detrimental effects associated with increased risk of CRC. Metabolites considered include heterocyclic amines and polycyclic aromatic hydrocarbons, heme iron, secondary bile acids, ethanol, and aromatic amines. It is necessary to delve deeper into the mechanisms of action of these metabolites in CRC and identify the microbiota members involved in their production. Furthermore, since diet is the main factor capable of modifying the intestinal microbiota, conducting studies that include detailed descriptions of dietary interventions is crucial. All this knowledge is essential for developing precision nutrition strategies to optimise a protective intestinal microbiota against CRC.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in GeneticsPub Date : 2024-01-01Epub Date: 2024-05-11DOI: 10.1016/bs.adgen.2024.04.001
Adrián Odriozola, Adriana González, Iñaki Odriozola, Jesús Álvarez-Herms, Francesc Corbi
{"title":"Microbiome-based precision nutrition: Prebiotics, probiotics and postbiotics.","authors":"Adrián Odriozola, Adriana González, Iñaki Odriozola, Jesús Álvarez-Herms, Francesc Corbi","doi":"10.1016/bs.adgen.2024.04.001","DOIUrl":"10.1016/bs.adgen.2024.04.001","url":null,"abstract":"<p><p>Microorganisms have been used in nutrition and medicine for thousands of years worldwide, long before humanity knew of their existence. It is now known that the gut microbiota plays a key role in regulating inflammatory, metabolic, immune and neurobiological processes. This text discusses the importance of microbiota-based precision nutrition in gut permeability, as well as the main advances and current limitations of traditional probiotics, new-generation probiotics, psychobiotic probiotics with an effect on emotional health, probiotic foods, prebiotics, and postbiotics such as short-chain fatty acids, neurotransmitters and vitamins. The aim is to provide a theoretical context built on current scientific evidence for the practical application of microbiota-based precision nutrition in specific health fields and in improving health, quality of life and physiological performance.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in GeneticsPub Date : 2024-01-01Epub Date: 2024-09-27DOI: 10.1016/bs.adgen.2024.08.004
Adriana González, Iker Badiola, Asier Fullaondo, Javier Rodríguez, Adrian Odriozola
{"title":"Personalised medicine based on host genetics and microbiota applied to colorectal cancer.","authors":"Adriana González, Iker Badiola, Asier Fullaondo, Javier Rodríguez, Adrian Odriozola","doi":"10.1016/bs.adgen.2024.08.004","DOIUrl":"https://doi.org/10.1016/bs.adgen.2024.08.004","url":null,"abstract":"<p><p>Colorectal cancer (CRC) ranks second in incidence and third in cancer mortality worldwide. This situation, together with the understanding of the heterogeneity of the disease, has highlighted the need to develop a more individualised approach to its prevention, diagnosis and treatment through personalised medicine. This approach aims to stratify patients according to risk, predict disease progression and determine the most appropriate treatment. It is essential to identify patients who may respond adequately to treatment and those who may be resistant to treatment to avoid unnecessary therapies and minimise adverse side effects. Current research is focused on identifying biomarkers such as specific mutated genes, the type of mutations and molecular profiles critical for the individualisation of CRC diagnosis, prognosis and treatment guidance. In addition, the study of the intestinal microbiota as biomarkers is being incorporated due to the growing scientific evidence supporting its influence on this disease. This article comprehensively addresses the use of current and emerging diagnostic, prognostic and predictive biomarkers in precision medicine against CRC. The effects of host genetics and gut microbiota composition on new approaches to treating this disease are discussed. How the gut microbiota could mitigate the side effects of treatment is reviewed. In addition, strategies to modulate the gut microbiota, such as dietary interventions, antibiotics, and transplantation of faecal microbiota and phages, are discussed to improve CRC prevention and treatment. These findings provide a solid foundation for future research and improving the care of CRC patients.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}