Advances in GeneticsPub Date : 2025-01-01Epub Date: 2025-01-31DOI: 10.1016/bs.adgen.2024.12.001
Aditya Shah, Clancy O Bush, Rachel J Perry
{"title":"Genetic underpinnnings of type 2 diabetes.","authors":"Aditya Shah, Clancy O Bush, Rachel J Perry","doi":"10.1016/bs.adgen.2024.12.001","DOIUrl":"https://doi.org/10.1016/bs.adgen.2024.12.001","url":null,"abstract":"<p><p>Genetics is a significant risk factor for developing type 2 diabetes, with a family history conferring a 1.5-3-fold increased risk. Intriguingly, this heritable risk is higher when the affected parent is the mother, suggesting a potential role of mitochondrial genetics -maternally inherited DNA - in diabetes pathogenesis, a hypothesis this chapter will explore. While obesity mediates some of the genetic risk of type 2 diabetes, the chapter and will focus on genetic influences on diabetes independent of obesity. Mechanistically, genetic variants directly or indirectly contribute to insulin resistance across key tissues, including liver, muscle and adipose tissue. This insulin resistance prevents the liver from efficiently suppressing glucose production in response to insulin and impairs glucose uptake in muscle during postprandial states. Insulin resistance is driven by complex interactions between the genome and environmental, which can, in turn, influence gene expression and contribute to worsening of metabolic dysfunction. This chapter examines how tissue-specific genetic changes drive insulin resistance in individual organs and how these localized dysfunctions contribute to the broader, multi-organ metabolic dysfunction that characterize type 2 diabetes.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":"113 ","pages":"54-75"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144133300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in GeneticsPub Date : 2025-01-01Epub Date: 2025-02-05DOI: 10.1016/bs.adgen.2024.11.002
David Meseguer García
{"title":"Retinal physiology in metabolic syndrome.","authors":"David Meseguer García","doi":"10.1016/bs.adgen.2024.11.002","DOIUrl":"https://doi.org/10.1016/bs.adgen.2024.11.002","url":null,"abstract":"<p><p>Obesity is increasingly recognized not only for its systemic health impacts but also for its association with visual defects and eye diseases. This chapter explores the relationship between obesity and ocular health, highlighting the mechanisms by which metabolic dysregulation influences visual outcomes. Obesity exacerbates risk factors such as hypertension, dyslipidemia, and insulin resistance, which compromise retinal and optic nerve health. Conditions like diabetic retinopathy, age-related macular degeneration, and glaucoma are discussed in the context of obesity-related inflammation, oxidative stress, and altered vascular function, focusing on the retina as one of the body's most metabolically demanding tissues. Key pathways include adipose-derived cytokines that disrupt retinal homeostasis, and the effects of insulin resistance on retinal cells and vasculature. Furthermore, this chapter covers emerging evidence on the advances of genetic factors linking diabetic retinopathy to retinal impairments. By elucidating these interactions, we aim to provide insight into preventive and therapeutic strategies that could mitigate vision loss among individuals with obesity.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":"113 ","pages":"76-101"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144133310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in GeneticsPub Date : 2025-01-01Epub Date: 2025-03-06DOI: 10.1016/bs.adgen.2025.02.003
Jose G Grajales-Reyes
{"title":"Advances in energy balance & metabolism circuitry.","authors":"Jose G Grajales-Reyes","doi":"10.1016/bs.adgen.2025.02.003","DOIUrl":"https://doi.org/10.1016/bs.adgen.2025.02.003","url":null,"abstract":"<p><p>Advancements in informatics, genetics, and neuroscience have greatly expanded our understanding of how the central nervous system (CNS) regulates energy balance and metabolism. This chapter explores the key neural circuits within the hypothalamus and brainstem that integrate behavioral and physiological processes to maintain metabolic homeostasis. It also examines the dynamic interplay between the CNS and peripheral organs, mediated through hormonal and neuronal signals, which fine-tune appetite, energy expenditure, and body weight. Furthermore, we highlight groundbreaking research that unveils molecular and cellular pathways governing energy regulation, representing a new frontier in addressing obesity and metabolic disorders. Innovative approaches, such as neurogenetic and neuromodulation techniques, are explored as promising strategies for improving weight management and metabolic health. By providing a comprehensive perspective on the mechanisms underlying energy balance, this chapter underscores the transformative potential of emerging therapeutic innovations.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":"113 ","pages":"1-28"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144133293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in GeneticsPub Date : 2025-01-01Epub Date: 2025-03-06DOI: 10.1016/bs.adgen.2025.02.001
Thanh N Pham, Rebecca E Schelling, Ken H Loh
{"title":"Parkinson's disease and metabolic disorders, understanding their shared co-morbidity through the autonomic nervous system.","authors":"Thanh N Pham, Rebecca E Schelling, Ken H Loh","doi":"10.1016/bs.adgen.2025.02.001","DOIUrl":"https://doi.org/10.1016/bs.adgen.2025.02.001","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and nonmotor dysfunctions. Its pathological hallmark is the aggregation of ɑ-synuclein in the central nervous system (CNS), leading to widespread loss of dopaminergic neurons in the substantia nigra (SN). Interestingly, metabolic disorders localized in the periphery, such as diabetes mellitus, frequently co-occur with PD. Emerging evidence highlights a bidirectional relationship: metabolic diseases may accelerate PD progression, while PD can exacerbate metabolic dysfunction. Beyond these associations, a growing body of research suggests that dysfunction in the peripheral nervous system, the primary communication bridge between the brain and peripheral organs, plays a critical role in these comorbidities. Autonomic nerve perturbation may accelerate dopaminergic neuronal loss in the SN and exacerbate metabolic dysregulation. This chapter synthesizes current evidence linking autonomic dysfunction with the progression of PD and related metabolic disorders, and it explores innovative therapeutic strategies leveraging this bidirectional relationship to address PD progression.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":"113 ","pages":"199-247"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144133306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in GeneticsPub Date : 2025-01-01Epub Date: 2025-01-31DOI: 10.1016/bs.adgen.2024.12.002
Ayako Nakaki, Fàtima Crispi, Francesca Crovetto, Roberta Haddad-Tóvolli
{"title":"Neural mechanisms and health implications of food cravings during pregnancy.","authors":"Ayako Nakaki, Fàtima Crispi, Francesca Crovetto, Roberta Haddad-Tóvolli","doi":"10.1016/bs.adgen.2024.12.002","DOIUrl":"https://doi.org/10.1016/bs.adgen.2024.12.002","url":null,"abstract":"<p><p>Food cravings, an intense desire to consume specific foods, are a complex interplay of cognitive, emotional, behavioral, physiological, and cultural factors. Although prevalent across genders, food cravings are more frequent and intense in women, with hormonal fluctuations-particularly during the menstrual cycle and pregnancy-playing a significant role. Pregnancy, marked by profound hormonal and physiological shifts, often heightens cravings, likely as a response to the increased metabolic needs of both mother and fetus. However, the tendency to crave high-calorie, palatable foods during this time can lead to excessive weight gain, presenting potential risks to both maternal and fetal health. This chapter examines the neural mechanisms underlying altered eating behaviors during pregnancy and their role in triggering food cravings. We discuss the health implications of disrupted eating patterns in pregnancy, emphasizing the need for further research to advance understanding of female-specific neurobiology and to develop targeted interventions that support healthy eating behaviors, ultimately improving maternal and offspring health outcomes.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":"113 ","pages":"146-171"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144133303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in GeneticsPub Date : 2025-01-01Epub Date: 2024-12-16DOI: 10.1016/bs.adgen.2024.11.001
María José Ortuño Romero, Daxiang Na
{"title":"From metabolomics to energy balance physiology.","authors":"María José Ortuño Romero, Daxiang Na","doi":"10.1016/bs.adgen.2024.11.001","DOIUrl":"https://doi.org/10.1016/bs.adgen.2024.11.001","url":null,"abstract":"<p><p>Omics technologies are transforming our understanding of disease mechanisms and reshaping clinical practice. By enabling high-throughput, unbiased data collection at various molecular levels - including genes (genomics), mRNA (transcriptomics), proteins (proteomics), and metabolites (metabolomics) - omics approaches offer a comprehensive view of biological states in both health and disease. Among these, metabolomics has emerged as a pivotal tool, rapidly evolving beyond diagnostics to become a cutting-edge technique for pinpointing metabolites that regulate key physiological processes. This chapter reviews the advances in metabolomics, its integration with other omics approaches, and its applications, particularly emphasizing energy homeostasis. By incorporating metabolomic insights into physiology, we move closer to an integrative understanding of biological systems, laying the groundwork for novel therapies to combat obesity and related metabolic disorders.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":"113 ","pages":"102-145"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144133297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in GeneticsPub Date : 2025-01-01Epub Date: 2025-05-05DOI: 10.1016/bs.adgen.2025.03.001
Suhani Hingar, Marc Schneeberger Pané, María José Ortuño Romero
{"title":"Prader Willi syndrome: advances in genetics.","authors":"Suhani Hingar, Marc Schneeberger Pané, María José Ortuño Romero","doi":"10.1016/bs.adgen.2025.03.001","DOIUrl":"https://doi.org/10.1016/bs.adgen.2025.03.001","url":null,"abstract":"<p><p>Prader-Willi syndrome (PWS) is a complex genetic disorder arising from abnormalities on chromosome 15q11.2-q13, characterized by distinct physical, cognitive, and behavioral features that evolve across the lifespan. Early manifestations include severe hypotonia, feeding difficulties, and failure to thrive in infancy, progressing to hyperphagia, obesity, intellectual disabilities, and behavioral challenges in later stages. Additional features include growth hormone deficiency, short stature, delayed puberty, and other endocrine abnormalities. Genetic advances have illuminated the role of imprinted genes, such as SNORD116, in driving the syndrome's core features, offering insights into its variability and severity. Emerging research on targeted pathways, including oxytocin and ghrelin signaling, holds promise for innovative treatments addressing hyperphagia and behavioral symptoms. This chapter provides a comprehensive overview of PWS's clinical features, natural history, and molecular underpinnings, underscoring the importance of early diagnosis, multidisciplinary care, and precision medicine in optimizing outcomes and enhancing the quality of life for individuals with PWS.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":"113 ","pages":"29-52"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144133308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in GeneticsPub Date : 2025-01-01Epub Date: 2025-03-07DOI: 10.1016/bs.adgen.2025.02.002
Amanda Rodríguez-Díaz, Carlos Diéguez, Miguel López, Óscar Freire-Agulleiro
{"title":"FAcTs on fire: Exploring thermogenesis.","authors":"Amanda Rodríguez-Díaz, Carlos Diéguez, Miguel López, Óscar Freire-Agulleiro","doi":"10.1016/bs.adgen.2025.02.002","DOIUrl":"https://doi.org/10.1016/bs.adgen.2025.02.002","url":null,"abstract":"<p><p>Thermoregulation is a fundamental biological process that allows birds and mammals to maintain a stable internal temperature despite environmental fluctuations, a mechanism shaped by millions of years of evolution. Non-shivering thermogenesis (NST), primarily driven by brown adipose tissue (BAT), plays a central role in thermoregulation by not only helping maintain energy homeostasis but also influencing broader metabolic and physiological processes. Recent research has revealed that BAT thermogenesis is regulated by peripheral hormones and at a central level, with key hypothalamic energy-sensing pathways-such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress-playing critical roles. Beyond its metabolic functions, BAT and NST have emerged as important contributors to tumor biology, offering novel therapeutic strategies for metabolic and oncological diseases. This review explores the intricate mechanisms underpinning NST, including UCP1-dependent thermogenesis and alternative pathways such as creatine cycling, calcium-dependent thermogenesis, and lipid cycling. Emerging evidence further highlights BAT's potential in to modulate tumor metabolism, with pharmacological and genetic approaches showing promise in reshaping the tumor microenvironment. This growing body of knowledge offers exciting prospects for targeting BAT thermogenesis in treating obesity and other metabolic diseases.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":"113 ","pages":"172-198"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144133295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in GeneticsPub Date : 2024-01-01Epub Date: 2024-09-20DOI: 10.1016/bs.adgen.2024.08.001
Iker Badiola
{"title":"What we need in colorectal cancer research, and why?","authors":"Iker Badiola","doi":"10.1016/bs.adgen.2024.08.001","DOIUrl":"https://doi.org/10.1016/bs.adgen.2024.08.001","url":null,"abstract":"<p><p>Cancer is a complex disease that includes tumour and healthy cells surrounding and infiltrating the tumour. During cancer development, tumour cells release many extracellular signals in an autocrine and paracrine way, producing deep phenotypic changes in the surrounding cells, becoming protumoral actors. The entire entity composed of tumour cells and the recruited elements is known as the tumour microenvironment. Immune cells, fibroblasts and endothelial cells, mainly with the extracellular matrix, are the most common elements in different cancer types and coexist in a complex balance of protumoral and antitumoral factors. In this context, the spatial disposition of the tumour microenvironment elements is crucial to knowing the role of each one in the disease development, and the multiplex spatial technology is the way to map the tumours. The combination of spatial study with transcriptomic, proteomic, and epigenomic studies is the most modern tool in the hands of cancer researchers, and it has opened a new era in the study of cancer biology.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":"112 ","pages":"1-29"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in GeneticsPub Date : 2024-01-01Epub Date: 2024-02-15DOI: 10.1016/bs.adgen.2024.01.001
Ildus I Ahmetov, George John, Ekaterina A Semenova, Elliott C R Hall
{"title":"Genomic predictors of physical activity and athletic performance.","authors":"Ildus I Ahmetov, George John, Ekaterina A Semenova, Elliott C R Hall","doi":"10.1016/bs.adgen.2024.01.001","DOIUrl":"10.1016/bs.adgen.2024.01.001","url":null,"abstract":"<p><p>Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":"111 ","pages":"311-408"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}