{"title":"Parkinson's disease and metabolic disorders, understanding their shared co-morbidity through the autonomic nervous system.","authors":"Thanh N Pham, Rebecca E Schelling, Ken H Loh","doi":"10.1016/bs.adgen.2025.02.001","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and nonmotor dysfunctions. Its pathological hallmark is the aggregation of ɑ-synuclein in the central nervous system (CNS), leading to widespread loss of dopaminergic neurons in the substantia nigra (SN). Interestingly, metabolic disorders localized in the periphery, such as diabetes mellitus, frequently co-occur with PD. Emerging evidence highlights a bidirectional relationship: metabolic diseases may accelerate PD progression, while PD can exacerbate metabolic dysfunction. Beyond these associations, a growing body of research suggests that dysfunction in the peripheral nervous system, the primary communication bridge between the brain and peripheral organs, plays a critical role in these comorbidities. Autonomic nerve perturbation may accelerate dopaminergic neuronal loss in the SN and exacerbate metabolic dysregulation. This chapter synthesizes current evidence linking autonomic dysfunction with the progression of PD and related metabolic disorders, and it explores innovative therapeutic strategies leveraging this bidirectional relationship to address PD progression.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":"113 ","pages":"199-247"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.adgen.2025.02.001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and nonmotor dysfunctions. Its pathological hallmark is the aggregation of ɑ-synuclein in the central nervous system (CNS), leading to widespread loss of dopaminergic neurons in the substantia nigra (SN). Interestingly, metabolic disorders localized in the periphery, such as diabetes mellitus, frequently co-occur with PD. Emerging evidence highlights a bidirectional relationship: metabolic diseases may accelerate PD progression, while PD can exacerbate metabolic dysfunction. Beyond these associations, a growing body of research suggests that dysfunction in the peripheral nervous system, the primary communication bridge between the brain and peripheral organs, plays a critical role in these comorbidities. Autonomic nerve perturbation may accelerate dopaminergic neuronal loss in the SN and exacerbate metabolic dysregulation. This chapter synthesizes current evidence linking autonomic dysfunction with the progression of PD and related metabolic disorders, and it explores innovative therapeutic strategies leveraging this bidirectional relationship to address PD progression.
期刊介绍:
Advances in Genetics presents an eclectic mix of articles of use to all human and molecular geneticists. They are written and edited by recognized leaders in the field and make this an essential series of books for anyone in the genetics field.