{"title":"HPC software for modelling field electron emission","authors":"S. Polyakov, T. Kudryashova, N. Tarasov","doi":"10.1016/j.advengsoft.2024.103734","DOIUrl":"10.1016/j.advengsoft.2024.103734","url":null,"abstract":"<div><p>The aim of this work is modeling processes of field electron emission in strong electromagnetic fields. This problem is relevant for many technical and medical applications. At present time, electrical devices that combine a large value of field, a powerful relativistic effect and an ultra-short time interval of action are in demand. They find their application in the treatment of the surfaces with inorganic, organic and mixed structures. Modeling of such devices encounters certain difficulties due to the complexity of the mathematical description of the emission processes. In this paper, an approach using the method of large smoothed particles in combination with grid calculation of fields based on Maxwell's equations is proposed. The study was carried out within the framework of the problem of calculating the field emission of electrons from the surface of axisymmetric metal cathodes on Cartesian and unstructured curved meshes. To implement the approach, a complex mathematical model, a parallel numerical algorithm and its software realization have been developed. The elaborated software is focused on the use of multiprocessor computing systems with a central architecture. Test calculations confirmed the correctness of the proposed approach and the high efficiency of its software implementation.</p></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"196 ","pages":"Article 103734"},"PeriodicalIF":4.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Voxel graph operators: Topological voxelization, graph generation, and derivation of discrete differential operators from voxel complexes","authors":"Pirouz Nourian , Shervin Azadi","doi":"10.1016/j.advengsoft.2024.103722","DOIUrl":"10.1016/j.advengsoft.2024.103722","url":null,"abstract":"<div><p>This paper presents a novel algebraic workflow for topological voxelization of spatial objects, construction of voxel connectivity graphs & hyper-graphs, and derivation of partial differential and multiple integral operators. Discretization of models of spatial domains is central to many analytic applications in such application areas as medical imaging, geometric modelling, computer graphics, engineering optimization, geospatial analysis, and scientific simulations. Whilst in some medical applications raster data models of spatial objects based on voxels arise naturally, e.g. in CT Scan and MRI imaging, in engineering applications the so-called boundary representations or vector data models based on points are far more common. The presented methodology puts forward a complete alternative geometry processing pipeline on par with the conventional vector-based geometry processing pipelines but far more elegant and advantageous for parallelization due to its explicit algebraic nature: effectively, by creating a mapping of geometric models from <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> to <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> to <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and eventually to an index space created by Morton Codes in <span><math><mi>N</mi></math></span> while ensuring the topological validity of the voxel models; namely their topological <em>thinness</em> and their geometrical <em>consistency</em>. The set of differential and integral operators presented in this paper generalizes beyond graphs and hyper-graphs constructed out of voxel models and provides an unprecedented complete set of algebraic differential operators for the discretization of digital simulations based on PDEs and advanced analyses using Spectral Graph Theory and Spectral Mesh Processing.</p></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"196 ","pages":"Article 103722"},"PeriodicalIF":4.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0965997824001297/pdfft?md5=70ca479380e784df296fd327a73b036b&pid=1-s2.0-S0965997824001297-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parallel shared-memory open-source code for simulations of transient problems using isogeometric analysis, implicit direction splitting and residual minimization (IGA-ADS-RM)","authors":"Marcin Łoś, Maciej Paszyński","doi":"10.1016/j.advengsoft.2024.103723","DOIUrl":"10.1016/j.advengsoft.2024.103723","url":null,"abstract":"<div><p>We present an open-source parallel shared-memory C++ software for simulations of transient phenomena on tensor product grids, with the following features: (1) it supports isogeometric finite element method discretizations; (2) it employs alternating-directions (ADS) linear cost <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span> solver; (3) it uses implicit time-integration schemes suitable for ADS, including Peaceman–Rachford, Douglass-Gunn, Adams–Moulton, generalized alpha, and BDF; (4) it works for 2D/3D problems; (5) it enables residual minimization stabilization; (6) it supports scalar, vector fields, and systems of PDEs; (7) it provides a ParaView interface; (8) it supports an interface to parallel MUMPS direct solver for problems not suitable for ADS solver; (9) it also supports interface to Preconditioned Conjugate Gradients (PCG) solver; (10) it includes a large library of problems: (a) non-stationary heat transfer (2D/3D); (b) stationary advection–diffusion (2D); (c) non-stationary advection–diffusion (2D/3D); (d) laminar flow (Stokes equations) (2D/3D); (e) Navier–Stokes (2D); (f) pollution propagation (2D/3D); (g) pathogen propagation (3D).</p></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"196 ","pages":"Article 103723"},"PeriodicalIF":4.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liyang Yao , Yue Zhu , Yaning Wang , Dianpeng Shi , Shuai Pang
{"title":"Research of tire-soil interaction based on FEM-DEM for small wheeled mobile platform in forest","authors":"Liyang Yao , Yue Zhu , Yaning Wang , Dianpeng Shi , Shuai Pang","doi":"10.1016/j.advengsoft.2024.103735","DOIUrl":"10.1016/j.advengsoft.2024.103735","url":null,"abstract":"<div><p>Due to forest soil environment being short of structured terrain, research of tire-soil interaction is critical to enhance the performance for small wheeled mobile platform in forest. A novel model coupled finite element method (FEM) and discrete element method (DEM), which can be used to investigate the interaction behavior between the small wheeled mobile platform tire and forest soil, was proposed in this paper. In particular, the tire model based on rubber parameters that were obtained by uniaxial tensile tests is established in ABAQUS. The mechanical parameters of the soil in forest were obtained by the standard of geotechnical test and the triaxial compression test. The soil model was established in PFC3D. Significantly, the novel tire-soil interaction model based on the coupling ABAQUS and PFC3D was proposed accurately. The drawbar pull, the sinkage and the soil vertical stress were obtained through the proposed tire-soil interaction model. Meanwhile, soil-bin tests for tire-soil interaction were established. The drawbar pull, the sinkage and the soil vertical stress were obtained in soil-bin tests, which were consistent with the results from the proposed tire-soil interaction model. The results validated the effectiveness of the coupling method and the accuracy of the proposed tire-soil interaction model. Moreover, the flow state of soil particles was described by the proposed tire-soil interaction model, which analyzed the forces evolution in the area where the tire was in contact with the soil.</p></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"196 ","pages":"Article 103735"},"PeriodicalIF":4.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141729474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corroded pipeline assessment using neural networks, the Finite Element Method and discrete wavelet transforms","authors":"Adriano Dayvson Marques Ferreira , Ramiro B. Willmersdorf , Silvana M.B. Afonso","doi":"10.1016/j.advengsoft.2024.103721","DOIUrl":"10.1016/j.advengsoft.2024.103721","url":null,"abstract":"<div><p>An essential task in the oil and gas industry is establishing an efficient way to assess corroded pipeline integrity. The literature shows that integrity analysis with Finite Elements simulations is the most effective. However, when faced with solving practical problems, the inconvenience of the high computational cost arises. This work aims to develop an efficient system to accurately predict the burst pressure of corroded pipelines with complex corrosion profiles through hybrid models combining multiresolution analysis, numerical simulations, and metamodels. The corroded region will be captured from ultrasonic inspections. Subsequently, the representation of corroded zones is parameterized with a discrete wavelet transform to reduce the amount of data representing the defect. The metamodel is built by training a neural network with the coefficients obtained from the wavelet transform and the pipeline material properties. The training data for the neural network are the failure pressures computed with non-linear finite element analysis of three-dimensional synthetic models with similar statistics to real corrosion profiles. The results obtained with the neural networks are accurate for all the test cases presented in this work.</p></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"196 ","pages":"Article 103721"},"PeriodicalIF":4.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linzi Fan , Liming Bo , Ruizhi Xu , Yao Chen , Pooya Sareh
{"title":"Tunable multi-stability of conical Kresling origami structures utilizing local imperfections","authors":"Linzi Fan , Liming Bo , Ruizhi Xu , Yao Chen , Pooya Sareh","doi":"10.1016/j.advengsoft.2024.103725","DOIUrl":"https://doi.org/10.1016/j.advengsoft.2024.103725","url":null,"abstract":"<div><p>The classic Kresling origami structure has been widely studied in the past two decades because of its interesting mechanical properties, including compressive-twist coupling deformation and bistability. It is also known that the conical derivative of Kresling origami can achieve a wider range of structural configurations while preserving the bistability of the original design. Moreover, different origami structures exhibit different responses to local geometric or material imperfections which are often inevitable in practical applications. In this study, we utilize the bar-and-hinge model to convert local imperfections to corresponding variations in nodal coordinates and equivalent stiffness values. Subsequently, we examine the response of conical Kresling origami structures to certain local imperfections. It is demonstrated that the effect of geometric imperfections on the folding properties of such structures is more substantial than that of material imperfections. We show that the multistability of conical Kresling origami structures may undergo a radical transformation when the value of the imperfection exceeds a certain threshold. Furthermore, based on responses to local imperfections, a derivative of the conical Kresling origami structure is designed which manifests tristability. This work develops a strategy for the form-finding of origami structures with tunable multistability, and can be generalized to analyze combined results from multiple local imperfections.</p></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"196 ","pages":"Article 103725"},"PeriodicalIF":4.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141605476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An efficient isogeometric topology optimization based on the adaptive damped geometric multigrid method","authors":"Shijie Luo , Feng Yang , Yingjun Wang","doi":"10.1016/j.advengsoft.2024.103712","DOIUrl":"https://doi.org/10.1016/j.advengsoft.2024.103712","url":null,"abstract":"<div><p>The efficiency of solving sparse linear equations in isogeometric topology optimization (ITO) can be improved by the multigrid algorithm due to its excellent convergence rate. However, its convergence rate heavily relies on the smoother's parameters. To address this problem, a new h-refinement multigrid conjugate gradient method with adaptive damped Jacobi (ADJ-hMGCG) has been developed. By analyzing the eigenvalues of the stiffness matrix, the damping coefficient of the smoother that achieves the fastest convergence rate has been determined. Due to the significant computational resources required to compute eigenvalues in the stiffness matrix, this paper also presents a preconditioned power method based on ITO and geometric multigrid characteristics to improve the efficiency of adaptive damping solutions. The results of 2D and 3D numerical examples show that the ADJ-hMGCG method successfully improves the solution speed and robustness while meeting the accuracy requirements of topology optimization, and the total computational cost can be reduced by up to 59 % compared to traditional solvers for large-scale problems.</p></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"196 ","pages":"Article 103712"},"PeriodicalIF":4.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141606249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An adaptive dimension-reduction Chebyshev metamodel","authors":"Yichen Zhou, Feng Li, Hongfeng Li, Shijun Qu","doi":"10.1016/j.advengsoft.2024.103720","DOIUrl":"https://doi.org/10.1016/j.advengsoft.2024.103720","url":null,"abstract":"<div><p>An adaptive dimension-reduction Chebyshev metamodel (ADC) is proposed to balance the accuracy and efficiency of dimension-reduction Chebyshev metamodels. A univariate dimension-reduction Chebyshev metamodel (UDC) is constructed by the dimension-reduction method and the Chebyshev metamodel. Based on the UDC, the bivariate terms largely impacting the metamodel are selected using an adaptive selection method, and are combined with the UDC to construct the ADC. The ADC has higher accuracy than the UDC because more calculated sample points are added. Compared with the bivariate dimension-reduction Chebyshev metamodel, the ADC needs fewer sample points and has higher efficiency. The result of numerical examples illustrate that ADC has higher accuracy compared with other commonly-used metamodels and is more suitable for approximating high-dimensional complex models.</p></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"196 ","pages":"Article 103720"},"PeriodicalIF":4.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parallelized plastic coupling of non-ordinary state-based peridynamics and finite element method","authors":"Suyeong Jin , Sunwoo Kim , Jung-Wuk Hong","doi":"10.1016/j.advengsoft.2024.103718","DOIUrl":"https://doi.org/10.1016/j.advengsoft.2024.103718","url":null,"abstract":"<div><p>Parallel computing is essential for enhancing computational efficiency and advancing computational mechanics. To reduce the computational cost, peridynamics, a nonlocal numerical method, has been coupled with the finite element method (FEM). However, the accurate modeling of plastic deformation within the coupling framework of the FEM and non-ordinary state-based peridynamics (NOSB-PD) requires further investigation and might add to the computational expense. In this study, the open multi-processing application interface (OpenMP) is implemented for the plastic coupling of the FEM and stabilized NOSB-PD. The framework for the plastic coupling model using OpenMP is described in detail. The implemented code is used to investigate the coupling boundary effect on plastic deformation depending on the size of the coupling zone. After verifying the plastic coupling, the parallelization performance of the coupling model is examined. The efficient coupling model is applied to simulate plastic deformation on a plate with a circular hole, and the displacement results show good agreement with the reference solution. The proposed coupling model can be applied to efficiently solve the plastic deformation and fracture in future studies.</p></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"196 ","pages":"Article 103718"},"PeriodicalIF":4.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bud Fox, Keni Chih-Hua Wu, Shengwei Ma, Stephen Yee Ming Wan
{"title":"A CFD simulation platform for surface finishing processes in advanced manufacturing","authors":"Bud Fox, Keni Chih-Hua Wu, Shengwei Ma, Stephen Yee Ming Wan","doi":"10.1016/j.advengsoft.2024.103716","DOIUrl":"https://doi.org/10.1016/j.advengsoft.2024.103716","url":null,"abstract":"<div><p>Products created by additive manufacturing often have surface imperfections that require post-processing operations to remove extraneous material in order to meet design specifications. The usage of computational fluid dynamics (CFD) simulations to predict material removal rates of components, allows practitioners to optimize the setup and usage of post-processing equipment. However, those without in-depth knowledge of CFD or the related specialized software, require an easy-to-use and cost-effective application to manage the computational workflow. The two specific surface finishing applications investigated here, are, abrasive flow machining (AFM) and robotic stream finishing (RSF). In order to satisfy user requirements, a modular, threaded, fault-tolerant and object-oriented project management application, written with the Python programming language and PyQt6 framework, has been developed to conduct surface finishing-related CFD simulations using OpenFOAM®. The advantages of the proposed software are: 1) the modern PyQt6 framework is used to develop a cross-platform and user-friendly application which employs the model-view class architectural paradigm for data management and its display, 2) step-by-step interactive project workflows have been tailored specifically for AFM and RSF simulations, 3) the developed steady-state viscoelastic flow solver for AFM and continuum-based steady-state dense granular flow solver for RSF, offer advantages over those provided by OpenFOAM® and 4) simulation results have been corroborated by experimental data to assess the improved accuracy of material removal prediction of the current software when compared to other commercial applications.</p></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"196 ","pages":"Article 103716"},"PeriodicalIF":4.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}