Advances in Engineering Software最新文献

筛选
英文 中文
Folded graphene reinforced metal matrix nanocomposites with comprehensively enhanced tensile mechanical properties
IF 4 2区 工程技术
Advances in Engineering Software Pub Date : 2024-11-30 DOI: 10.1016/j.advengsoft.2024.103829
Pan Shi , Yao Chen , Tong Guo , Yongming Tu , Jian Feng
{"title":"Folded graphene reinforced metal matrix nanocomposites with comprehensively enhanced tensile mechanical properties","authors":"Pan Shi ,&nbsp;Yao Chen ,&nbsp;Tong Guo ,&nbsp;Yongming Tu ,&nbsp;Jian Feng","doi":"10.1016/j.advengsoft.2024.103829","DOIUrl":"10.1016/j.advengsoft.2024.103829","url":null,"abstract":"<div><div>It is urgent to develop advanced materials with high strength, high toughness and good ductility for modern engineering structures. Graphene reinforced metal matrix nanocomposites exhibit significantly enhanced strength and toughness, but their ductility remains relatively low due to the inherent tensile brittleness of graphene. Inspired by the origami concept, we utilize the surface hydrogenation method to develop an armchair-like folded graphene (AFG) structure as reinforcement for metal matrix composites. Molecular dynamics simulations show that the AFG structure can simultaneously enhance the tensile strength, stiffness, ductility, and toughness of copper (Cu) matrix composites. Compared with pristine graphene/Cu nanocomposites, AFG/Cu nanocomposites exhibit better ductility and toughness, while maintaining comparable strength and stiffness. Furthermore, the mechanical properties of AFG/Cu nanocomposites can be tuned by altering the degree of AFG folding and the distances between adjacent hydrogenated zones. The strengthening and toughening mechanism is that mechanically strong AFG can effectively block dislocation propagation across the metal-graphene interface before it unfolds to fracture. Such mechanism can be extended to other 2D nanomaterials reinforced metal matrix nanocomposites, opening up an avenue for developing high-performance nanocomposites.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103829"},"PeriodicalIF":4.0,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142745936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficiency of the dynamic relaxation method in the stabilisation process of bridge and building frame 动态松弛法在桥梁和建筑框架稳定过程中的效率
IF 4 2区 工程技术
Advances in Engineering Software Pub Date : 2024-11-22 DOI: 10.1016/j.advengsoft.2024.103828
Somnath Karmakar , Goutam Kuti , Amit Shaw
{"title":"Efficiency of the dynamic relaxation method in the stabilisation process of bridge and building frame","authors":"Somnath Karmakar ,&nbsp;Goutam Kuti ,&nbsp;Amit Shaw","doi":"10.1016/j.advengsoft.2024.103828","DOIUrl":"10.1016/j.advengsoft.2024.103828","url":null,"abstract":"<div><div>More and more complex Civil Engineering problems are being considered in computational mechanics with the invention of high-quality computing techniques. In addition, the computational cost and storage requirement for complex and or large structures have increased dramatically, leading to an increased interest in removing the difficulties using any form of parallel computing. The process of applying the preload for parallel computing to any unstable structures is called a stabilising process, such as the Dynamic Relaxation Method (DRM) is one. This method minimises the energy by a simple vector iteration technique, which ultimately leads the structure to a static equilibrium state. The present study aims to highlight the utility of the DRM in the stabilisation process for small structures like building frames and large and or complicated structures such as bridges before actual transient analysis. Therefore, the present manuscript discusses the computational cost, CPU runtime, multiple increases of mass and rigid body displacement of building frames and bridges. The DRM allows an explicit solver to conduct a dynamic analysis by increasing the damping until the kinetic energy drops to a proposed value. The simulation of the DRM starts to find the equilibrium state with minimal dynamic effect, which is required to apply at the beginning of the solution phase to obtain the initial stress and displacement field before the start of the actual analysis.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103828"},"PeriodicalIF":4.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerodynamic optimization of aircraft wings using machine learning 利用机器学习优化飞机机翼气动性能
IF 4 2区 工程技术
Advances in Engineering Software Pub Date : 2024-11-21 DOI: 10.1016/j.advengsoft.2024.103801
M. Hasan , S. Redonnet , D. Zhongmin
{"title":"Aerodynamic optimization of aircraft wings using machine learning","authors":"M. Hasan ,&nbsp;S. Redonnet ,&nbsp;D. Zhongmin","doi":"10.1016/j.advengsoft.2024.103801","DOIUrl":"10.1016/j.advengsoft.2024.103801","url":null,"abstract":"<div><div>This study proposes a fast yet reliable optimization framework for the aerodynamic design of transonic aircraft wings. Combining Computational Fluid Dynamics (CFD) and Machine Learning (ML), the framework is successfully applied to the Common Research Model (CRM) benchmark aircraft proposed by NASA. The framework relies on a series of automated CFD simulations, from which no less than 160 planform variations of the CRM wing are assessed from an aerodynamic standpoint. This database is used to educate an ML surrogate model, for which two specific algorithms are explored, namely eXtreme Gradient Boosting (XGB) and Light Gradient Boosting Machine (LGBM). Once trained with 80 % of this database and tested with the remaining 20 %, the ML surrogates are employed to explore a larger design space, their optimum being then inferred using an optimization framework relying on a Multi-Objective Genetic Algorithm (MOGAO). Each ML-based optimal planform is then simulated through CFD to confirm its aerodynamic merits, which are then compared against those of a conventional, fully CFD-based optimization. The comparison is very favourable, the best ML-based optimal planform exhibiting similar performances as its CFD-optimized counterpart (e.g. a 14 % higher lift-to-drag ratio) for only half of the CPU cost. Overall, this study demonstrates the potential of ML-based methods for optimizing aircraft wings, thereby paving the way to the adoption of more disruptive, data-driven aircraft design paradigms.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103801"},"PeriodicalIF":4.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shear lag and shear deformation in box girders considering tendon transverse layout by improved beam element model 通过改进的梁单元模型考虑筋横向布置的箱梁剪力滞后和剪力变形
IF 4 2区 工程技术
Advances in Engineering Software Pub Date : 2024-11-21 DOI: 10.1016/j.advengsoft.2024.103826
Xiaoyang He , Zhengyang Chen , Qiangqiang Wu , Heng Lin , Yiqiang Xiang
{"title":"Shear lag and shear deformation in box girders considering tendon transverse layout by improved beam element model","authors":"Xiaoyang He ,&nbsp;Zhengyang Chen ,&nbsp;Qiangqiang Wu ,&nbsp;Heng Lin ,&nbsp;Yiqiang Xiang","doi":"10.1016/j.advengsoft.2024.103826","DOIUrl":"10.1016/j.advengsoft.2024.103826","url":null,"abstract":"<div><div>The transverse and vertical layouts of tendons within prestressed concrete (PC) box girders induce complex mechanical behaviors that necessitate precise evaluation for effective structural design. However, existing investigations often overlook the impact of tendon transverse layout. To address this gap, an improved beam element, designated as B12TS, is developed for shear deformation and shear lag analyses of PC box girders under prestressing effects. The element integrates the tendon transverse layout through non-uniform longitudinal displacements of the tendons modeled as a series of piecewise linear segments. The prestressing forces are converted into equivalent nodal forces acting on the elements. The element shape functions are derived from the homogeneous solutions to the relevant differential equations. Comparative analyses involving various beam element models, available experimental data, and three-dimensional (3D) finite element simulations demonstrate that the B12TS element model significantly enhances the accuracy and efficiency of predicting both deflections and stress distributions. Furthermore, the effects of prestressing on the flange and web tendons of typical PC box beams are examined to quantify the impacts of shear lag, shear deformation, and tendon transverse layout. The findings reveal that the transverse layout of the flange tendons remarkably influences both the magnitude and distribution shape of normal stresses, particularly near anchorage locations. Consequently, the B12TS element model proves to be a valuable analysis tool for designing prismatic and non-prismatic PC box girder bridges with various tendon layouts.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103826"},"PeriodicalIF":4.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel optimization approach for the design of environmentally efficient gridshells with reclaimed steel members 利用再生钢构件设计环保高效格栅外壳的新型优化方法
IF 4 2区 工程技术
Advances in Engineering Software Pub Date : 2024-11-20 DOI: 10.1016/j.advengsoft.2024.103825
V. Tomei, E. Grande, M. Imbimbo
{"title":"A novel optimization approach for the design of environmentally efficient gridshells with reclaimed steel members","authors":"V. Tomei,&nbsp;E. Grande,&nbsp;M. Imbimbo","doi":"10.1016/j.advengsoft.2024.103825","DOIUrl":"10.1016/j.advengsoft.2024.103825","url":null,"abstract":"<div><div>The reuse of structural components from decommissioned structures is gaining traction among researchers and industry professionals. This approach offers significant advantages, including reduced costs and a smaller environmental footprint, by incorporating reclaimed elements from dismantled structures into the design of new ones. Steel elements are particularly well-suited to this purpose because they preserve their mechanical properties over time. Nevertheless, integrating reused members into the structure of a gridshell introduces complexities into the design process, as it adds additional parameters related to the characteristics of the reused members themselves, such as cross-section, length, and material. Therefore, optimizing gridshell structures with reused members necessitates analyzing solutions based on the placement of the reused members within the grid, as well as considering grid configurations that accommodate the characteristics of the reused members.</div><div>This paper presents a novel approach for optimizing steel gridshells that integrates reclaimed members into the structure. The approach effectively combines a geometry and a size optimization technique through a unique process using genetic algorithms. Applied to a case study derived from the literature and considering different scenarios of reused elements, the approach is also compared to a manual design approach. The results and comparisons demonstrate the proposed approach's capability to provide lighter solutions, leading to lower costs and a reduced environmental impact, the last highlighted by the evaluation of the greenhouse gas emission for each case.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103825"},"PeriodicalIF":4.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Workflow for high-quality visualisation of large-scale CFD simulations by volume rendering 通过体渲染实现大规模 CFD 模拟高质量可视化的工作流程
IF 4 2区 工程技术
Advances in Engineering Software Pub Date : 2024-11-18 DOI: 10.1016/j.advengsoft.2024.103822
Markéta Faltýnková, Ondřej Meca, Tomáš Brzobohatý, Lubomír Říha, Milan Jaroš, Petr Strakoš
{"title":"Workflow for high-quality visualisation of large-scale CFD simulations by volume rendering","authors":"Markéta Faltýnková,&nbsp;Ondřej Meca,&nbsp;Tomáš Brzobohatý,&nbsp;Lubomír Říha,&nbsp;Milan Jaroš,&nbsp;Petr Strakoš","doi":"10.1016/j.advengsoft.2024.103822","DOIUrl":"10.1016/j.advengsoft.2024.103822","url":null,"abstract":"<div><div>High-fidelity CFD simulations can easily generate terabytes to petabytes of resulting data. Post-processing of such data is not an easy task. It holds especially for volume rendering, one of the most illustrative but computationally intensive post-processing techniques.</div><div>This paper presents an HPC-ready workflow for post-processing large-scale CFD data computed on unstructured meshes by volume rendering using matured visual effects tools. The workflow consists of five steps: (1) parallel loading of unstructured data into memory, (2) data load-balancing among available resources, (3) re-sampling unstructured data into a regular grid (voxelisation), (4) storing data to OpenVDB format, and (5) final high-quality volume rendering of the (possibly sparse) regular grid in Blender. The workflow is based on open-source libraries, where we have improved all these steps to build an effective and robust approach. Due to parallel loading and appropriate load balancing, our workflow (a) allows loading sequential databases that do not fit into the memory of a single node and (b) significantly outperforms current scientific visualisation tools in voxelisation scalability. Moreover, due to the connection to professional visual effects tools such as Blender, interactive or photo-realistic volume rendering by path tracing, which includes global illumination effects, is allowed.</div><div>With the workflow, it is possible to re-sample hundreds of time steps on an unstructured mesh with 1 billion cells (tens of TB of data) to a sparse regular grid with a density of 11 billion voxels and prepare data for interactive visualisation in just a few minutes using thousands of CPU cores.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103822"},"PeriodicalIF":4.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional isogeometric finite element solution method for the nonlinear thermal and thermomechanical bending analysis of laminated graphene platelet-reinforced composite plates with and without cutout 用于有切口和无切口层状石墨烯血小板增强复合材料板非线性热和热力学弯曲分析的三维等几何有限元求解方法
IF 4 2区 工程技术
Advances in Engineering Software Pub Date : 2024-11-18 DOI: 10.1016/j.advengsoft.2024.103824
Vuong Nguyen Van Do , Thang N. Dao , Chin-Hyung Lee
{"title":"Three-dimensional isogeometric finite element solution method for the nonlinear thermal and thermomechanical bending analysis of laminated graphene platelet-reinforced composite plates with and without cutout","authors":"Vuong Nguyen Van Do ,&nbsp;Thang N. Dao ,&nbsp;Chin-Hyung Lee","doi":"10.1016/j.advengsoft.2024.103824","DOIUrl":"10.1016/j.advengsoft.2024.103824","url":null,"abstract":"<div><div>In this paper, a new three-dimensional (3D) numerical solution method for analyzing the nonlinear flexural response behaviour of laminated graphene platelet (GPL)-reinforced composite plates in thermal or thermomechanical loading is presented. For this purpose, a 3D isogeometric finite element formulation for the thermal and thermomechanical bending analysis is established based on 3D elasticity theory into which the Green-Lagrange strain tensor is incorporated to take the geometric nonlinearity into account, and the 3D steady conduction of heat is considered as the thermal environment to reflect the real circumstance. The 3D isogeometric approach proposed, by replicating multiple benchmark problems and comparing the predicted results to the existing solutions, is evidenced to successfully perform the thermal and thermomechanical bending analysis. Following the verification, nonlinear flexure of the nanocomposite plates under the heat conduction in combination with and without mechanical loading is scrutinized by employing various parameters such as the weight fraction and arrangement scheme of the nanofillers, the plate configuration and the constraint condition. Two types of the GPL-embedded composite plates, i.e., rectangular pristine plate and rectangular plate with cutout are taken into account. Results demonstrate that the proposed IGA method can be used as an accurate and effective numerical tool for analyzing the nonlinear thermoelastic bending behaviour of the intact and perforated GPL-reinforced composite plates and that spreading GPLs near the opposite side of the surface on which the heating is imposed is the most favorable scheme of enhancing the thermal bending resistance.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103824"},"PeriodicalIF":4.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refined finite element analysis of helical wire ropes under multi-axial dynamic loading 多轴动态载荷下螺旋钢丝绳的精细有限元分析
IF 4 2区 工程技术
Advances in Engineering Software Pub Date : 2024-11-16 DOI: 10.1016/j.advengsoft.2024.103823
Huile Li , Huan Yan
{"title":"Refined finite element analysis of helical wire ropes under multi-axial dynamic loading","authors":"Huile Li ,&nbsp;Huan Yan","doi":"10.1016/j.advengsoft.2024.103823","DOIUrl":"10.1016/j.advengsoft.2024.103823","url":null,"abstract":"<div><div>Due to high tensile strength, light weight, and good flexibility, the steel wire ropes with helical structures are widely used as crucial load-bearing components in various industrial sectors such as civil engineering. They are subjected to significant vibrations caused by multi-axial dynamic loading during the service period which may eventually result in premature failures. This paper presents a refined finite element analysis method for helical wire ropes under multi-axial dynamic loading. The proposed method employs multi-directional dynamic excitations extracted from the analysis of the overall engineering systems to consider actual loading conditions. Refined finite element analysis of the entire steel wire rope under multi-axial dynamic loading is carried out for the first time based on the global-local finite element model to obtain detailed mechanical responses. The critical rope segment is represented by solid elements taking into account the helical structure, inter-wire frictional contact, slippage, and material nonlinearity, among others, and non-critical segments are simulated with beam elements in the established global-local model, which can achieve good balance between computational efficiency and accuracy. The refined finite element modeling strategy is validated via three numerical examples with comparisons against the results in the literature. The proposed method is illustrated on the suspender cable used in suspension bridges. Detailed mechanical responses and their influencing factors are examined to acquire new insights into the dynamic mechanical characteristics of typical double-helical wire rope. The present work can provide an efficient tool for the assessment of in-service engineering systems containing helical wire ropes.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103823"},"PeriodicalIF":4.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An engineering-oriented Shallow-water Hydro-Sediment-Morphodynamic model using the GPU-acceleration and the hybrid LTS/GMaTS method 利用 GPU 加速和 LTS/GMaTS 混合方法建立面向工程的浅水水文沉积-形态动力学模型
IF 4 2区 工程技术
Advances in Engineering Software Pub Date : 2024-11-16 DOI: 10.1016/j.advengsoft.2024.103821
Zixiong Zhao , Peng Hu , Wei Li , Zhixian Cao , Youwei Li
{"title":"An engineering-oriented Shallow-water Hydro-Sediment-Morphodynamic model using the GPU-acceleration and the hybrid LTS/GMaTS method","authors":"Zixiong Zhao ,&nbsp;Peng Hu ,&nbsp;Wei Li ,&nbsp;Zhixian Cao ,&nbsp;Youwei Li","doi":"10.1016/j.advengsoft.2024.103821","DOIUrl":"10.1016/j.advengsoft.2024.103821","url":null,"abstract":"<div><div>Engineering applications of finite volume Shallow-water Hydro-Sediment-Morphodynamic models (SHSM) have faced limitations due to their high computational demands arising from either extremely large amounts of computational cells or extremely small time steps at some regions and simultaneously the adoption of the globally minimum time step. To this end, we present an engineering-oriented modeling framework by (1) using the GPU-acceleration that overcomes the challenge of extremely large amounts of computational cells and (2) using a hybrid local-time-stepping/global maximum time step (LTS/GMaTS) strategy that mitigates the extremely small local time steps necessitated by locally-refined meshes or non-uniformity of flow conditions. The GPU parallel algorithm is tailored to fully leverage the computational power of GPU, optimizing numerical structure, kernel functions and memory usage, all in conjunction with the hybrid LTS/GMaTS implementation. We demonstrate its computational efficiency by simulating one experimental dam-break flow and a field-scale case in the Xinjiu waterway, Middle Yangtze River. The results show that the scheme performs well in terms of accuracy, efficiency, and robustness in reproducing real-world hydro-sediment-morphological evolution.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103821"},"PeriodicalIF":4.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimensionality reduction of solution reconstruction methods for a four-point stencil 四点模版求解重构方法的降维问题
IF 4 2区 工程技术
Advances in Engineering Software Pub Date : 2024-11-15 DOI: 10.1016/j.advengsoft.2024.103804
Seongmun Jung, Seung-Yun Shin , Sang Lee
{"title":"Dimensionality reduction of solution reconstruction methods for a four-point stencil","authors":"Seongmun Jung,&nbsp;Seung-Yun Shin ,&nbsp;Sang Lee","doi":"10.1016/j.advengsoft.2024.103804","DOIUrl":"10.1016/j.advengsoft.2024.103804","url":null,"abstract":"<div><div>The development of reconstruction methods has faced considerable challenges due to their inherent high dimensionality. In the present study, an innovative dimensionality reduction method aimed at mitigating these challenges by normalizing flow variables is proposed. Through our investigation, we demonstrate that a reconstruction method, specifically designed for a four-point stencil that is compatible with unstructured meshes, can be effectively represented by six two-dimensional functions. This key insight enables us to devise a visualization technique utilizing a single contour plot for the reconstruction method. Additionally, we establish that a single data set can adequately represent the reconstruction method, facilitating solution reconstruction through data set interpolation. By carefully evaluating the interpolation error, a data set of reasonable size yields sufficiently small interpolation errors. Notably, we uncover the possibility of extracting reconstruction methods from a trained artificial neural network (ANN). To gauge the impact of accumulated interpolation errors on solution quality, we conduct comprehensive analyses on four benchmark problems. Our results demonstrate that with a data set of sufficient size, the accumulated interpolation error becomes negligible, rendering the solution reconstruction by interpolating the extracted data set both accurate and cost-effective. The implications of our findings hold substantial promise for enhancing the efficiency and efficacy of reconstruction methods.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"199 ","pages":"Article 103804"},"PeriodicalIF":4.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信