Lan Nguyen-Ngoc , Hoa Tran-Ngoc , Thang Le-Xuan , Chi-Thanh Nguyen , Guido De Roeck , Thanh Bui-Tien , Magd Abdel Wahab
{"title":"利用增强时间序列数据的卷积长短期记忆识别桥梁结构损伤的两步法","authors":"Lan Nguyen-Ngoc , Hoa Tran-Ngoc , Thang Le-Xuan , Chi-Thanh Nguyen , Guido De Roeck , Thanh Bui-Tien , Magd Abdel Wahab","doi":"10.1016/j.advengsoft.2024.103795","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel two-step approach to identifying structural damages in bridge structure through the integration of 1D Convolutional Neural Network (1DCNN) and Long Short-Term Memory (LSTM) networks, enhanced by the augmentation and transformation techniques using Symbolic Aggregate approXimation (SAX) for time-series data analysis. In the first step, the time-series data of the bridge is diversified and quantified by augmentation techniques to make the model more robust and increase its generalization capabilities. After that, SAX is implemented to reduce the volume and categorize time series data through the transformation of continuous time series into discrete symbols, thereby decreasing the size of the data for more efficient training performance. In the second step, an advanced DL model combining 1DCNN and LSTM is proposed to tackle the damage identification problems of the processed data. By leveraging the strengths of CNNs in feature extraction and LSTMs in sequence learning, combined with advanced techniques for data augmentation, our methodology offers a robust solution not only for improving the model's training process but also for enabling it to learn from a more diverse and comprehensive dataset that mimics different damage scenarios, allowing more accurate detection of damages within bridge structures. Validation of the proposed method is conducted using time-series data collected from Chuong Duong Bridge structure. The effectiveness of the proposed method is compared with other models, such as 1DCNN, LSTM, and the combined 1DCNN-LSTM. The results show that the proposed 1DCNN-LSTM-SAX outperforms the other methods in terms of accuracy and, thus, can be used extensively to deal with the damage identification problems of bridges using time-series data.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"198 ","pages":"Article 103795"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two-step approach for damage identification in bridge structure using convolutional Long Short-Term Memory with augmented time-series data\",\"authors\":\"Lan Nguyen-Ngoc , Hoa Tran-Ngoc , Thang Le-Xuan , Chi-Thanh Nguyen , Guido De Roeck , Thanh Bui-Tien , Magd Abdel Wahab\",\"doi\":\"10.1016/j.advengsoft.2024.103795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a novel two-step approach to identifying structural damages in bridge structure through the integration of 1D Convolutional Neural Network (1DCNN) and Long Short-Term Memory (LSTM) networks, enhanced by the augmentation and transformation techniques using Symbolic Aggregate approXimation (SAX) for time-series data analysis. In the first step, the time-series data of the bridge is diversified and quantified by augmentation techniques to make the model more robust and increase its generalization capabilities. After that, SAX is implemented to reduce the volume and categorize time series data through the transformation of continuous time series into discrete symbols, thereby decreasing the size of the data for more efficient training performance. In the second step, an advanced DL model combining 1DCNN and LSTM is proposed to tackle the damage identification problems of the processed data. By leveraging the strengths of CNNs in feature extraction and LSTMs in sequence learning, combined with advanced techniques for data augmentation, our methodology offers a robust solution not only for improving the model's training process but also for enabling it to learn from a more diverse and comprehensive dataset that mimics different damage scenarios, allowing more accurate detection of damages within bridge structures. Validation of the proposed method is conducted using time-series data collected from Chuong Duong Bridge structure. The effectiveness of the proposed method is compared with other models, such as 1DCNN, LSTM, and the combined 1DCNN-LSTM. The results show that the proposed 1DCNN-LSTM-SAX outperforms the other methods in terms of accuracy and, thus, can be used extensively to deal with the damage identification problems of bridges using time-series data.</div></div>\",\"PeriodicalId\":50866,\"journal\":{\"name\":\"Advances in Engineering Software\",\"volume\":\"198 \",\"pages\":\"Article 103795\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965997824002023\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824002023","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A two-step approach for damage identification in bridge structure using convolutional Long Short-Term Memory with augmented time-series data
This paper presents a novel two-step approach to identifying structural damages in bridge structure through the integration of 1D Convolutional Neural Network (1DCNN) and Long Short-Term Memory (LSTM) networks, enhanced by the augmentation and transformation techniques using Symbolic Aggregate approXimation (SAX) for time-series data analysis. In the first step, the time-series data of the bridge is diversified and quantified by augmentation techniques to make the model more robust and increase its generalization capabilities. After that, SAX is implemented to reduce the volume and categorize time series data through the transformation of continuous time series into discrete symbols, thereby decreasing the size of the data for more efficient training performance. In the second step, an advanced DL model combining 1DCNN and LSTM is proposed to tackle the damage identification problems of the processed data. By leveraging the strengths of CNNs in feature extraction and LSTMs in sequence learning, combined with advanced techniques for data augmentation, our methodology offers a robust solution not only for improving the model's training process but also for enabling it to learn from a more diverse and comprehensive dataset that mimics different damage scenarios, allowing more accurate detection of damages within bridge structures. Validation of the proposed method is conducted using time-series data collected from Chuong Duong Bridge structure. The effectiveness of the proposed method is compared with other models, such as 1DCNN, LSTM, and the combined 1DCNN-LSTM. The results show that the proposed 1DCNN-LSTM-SAX outperforms the other methods in terms of accuracy and, thus, can be used extensively to deal with the damage identification problems of bridges using time-series data.
期刊介绍:
The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving.
The scope of the journal includes:
• Innovative computational strategies and numerical algorithms for large-scale engineering problems
• Analysis and simulation techniques and systems
• Model and mesh generation
• Control of the accuracy, stability and efficiency of computational process
• Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing)
• Advanced visualization techniques, virtual environments and prototyping
• Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations
• Application of object-oriented technology to engineering problems
• Intelligent human computer interfaces
• Design automation, multidisciplinary design and optimization
• CAD, CAE and integrated process and product development systems
• Quality and reliability.