Algebra Universalis最新文献

筛选
英文 中文
Quasivarieties of algebras whose compact relative congruences are principal 其紧凑相对全等为主项的代数准变量
IF 0.6 4区 数学
Algebra Universalis Pub Date : 2024-08-27 DOI: 10.1007/s00012-024-00866-4
Anvar M. Nurakunov
{"title":"Quasivarieties of algebras whose compact relative congruences are principal","authors":"Anvar M. Nurakunov","doi":"10.1007/s00012-024-00866-4","DOIUrl":"10.1007/s00012-024-00866-4","url":null,"abstract":"<div><p>A quasivariety <span>(mathfrak N)</span> is called <i>relative congruence principal</i> if, for every algebra <span>(Ain mathfrak N)</span>, every compact <span>(mathfrak N)</span>-congruence on <i>A</i> is a principal <span>(mathfrak N)</span>-congruence. We characterize relative congruence principal quasivarieties in terms of one identity and two quasi-identities. We will use the characterization to show that there exists a continuum of relative congruence principal quasivarieties of algebras of a signature <span>(sigma )</span>, provided <span>(sigma )</span> contains at least one operation of arity greater than 1. Several examples are provided.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 4","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Override and restricted union for partial functions 部分函数的覆盖和受限联合
IF 0.6 4区 数学
Algebra Universalis Pub Date : 2024-08-12 DOI: 10.1007/s00012-024-00864-6
Tim Stokes
{"title":"Override and restricted union for partial functions","authors":"Tim Stokes","doi":"10.1007/s00012-024-00864-6","DOIUrl":"10.1007/s00012-024-00864-6","url":null,"abstract":"<div><p>The <i>override</i> operation <span>(sqcup )</span> is a natural one in computer science, and has connections with other areas of mathematics such as hyperplane arrangements. For arbitrary functions <i>f</i> and <i>g</i>, <span>(fsqcup g)</span> is the function with domain <span>({{,textrm{dom},}}(f)cup {{,textrm{dom},}}(g))</span> that agrees with <i>f</i> on <span>({{,textrm{dom},}}(f))</span> and with <i>g</i> on <span>({{,textrm{dom},}}(g) backslash {{,textrm{dom},}}(f))</span>. Jackson and the author have shown that there is no finite axiomatisation of algebras of functions of signature <span>((sqcup ))</span>. But adding operations (such as <i>update</i>) to this minimal signature can lead to finite axiomatisations. For the functional signature <span>((sqcup ,backslash ))</span> where <span>(backslash )</span> is set-theoretic difference, Cirulis has given a finite equational axiomatisation as subtraction o-semilattices. Define <span>(fcurlyvee g=(fsqcup g)cap (gsqcup f))</span> for all functions <i>f</i> and <i>g</i>; this is the largest domain restriction of the binary relation <span>(fcup g)</span> that gives a partial function. Now <span>(fcap g=fbackslash (fbackslash g))</span> and <span>(fsqcup g=fcurlyvee (fcurlyvee g))</span> for all functions <i>f</i>, <i>g</i>, so the signatures <span>((curlyvee ))</span> and <span>((sqcup ,cap ))</span> are both intermediate between <span>((sqcup ))</span> and <span>((sqcup ,backslash ))</span> in expressive power. We show that each is finitely axiomatised, with the former giving a proper quasivariety and the latter the variety of associative distributive o-semilattices in the sense of Cirulis.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 4","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-024-00864-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(varvec{S})-preclones and the Galois connection (varvec{{}^{S}{}textrm{Pol}})–(varvec{{}^{S}{}textrm{Inv}}), Part I $$varvec{S}$ -preclones and Galois connection $$varvec{{}^{S}{}textrm{Pol}}$ - $$varvec{{}^{S}{}textrm{Inv}}$, Part I
IF 0.6 4区 数学
Algebra Universalis Pub Date : 2024-07-09 DOI: 10.1007/s00012-024-00863-7
Peter Jipsen, Erkko Lehtonen, Reinhard Pöschel
{"title":"(varvec{S})-preclones and the Galois connection (varvec{{}^{S}{}textrm{Pol}})–(varvec{{}^{S}{}textrm{Inv}}), Part I","authors":"Peter Jipsen,&nbsp;Erkko Lehtonen,&nbsp;Reinhard Pöschel","doi":"10.1007/s00012-024-00863-7","DOIUrl":"10.1007/s00012-024-00863-7","url":null,"abstract":"<div><p>We consider <i>S</i>-<i>operations</i> <span>(f :A^{n} rightarrow A)</span> in which each argument is assigned a <i>signum</i> <span>(s in S)</span> representing a “property” such as being order-preserving or order-reversing with respect to a fixed partial order on <i>A</i>. The set <i>S</i> of such properties is assumed to have a monoid structure reflecting the behaviour of these properties under the composition of <i>S</i>-operations (e.g., order-reversing composed with order-reversing is order-preserving). The collection of all <i>S</i>-operations with prescribed properties for their signed arguments is not a clone (since it is not closed under arbitrary identification of arguments), but it is a preclone with special properties, which leads to the notion of <i>S</i>-<i>preclone</i>. We introduce <i>S</i>-<i>relations</i> <span>(varrho = (varrho _{s})_{s in S})</span>, <i>S</i>-<i>relational clones</i>, and a preservation property (<img>), and we consider the induced Galois connection <span>({}^{S}{}textrm{Pol})</span>–<span>({}^{S}{}textrm{Inv})</span>. The <i>S</i>-preclones and <i>S</i>-relational clones turn out to be exactly the closed sets of this Galois connection. We also establish some basic facts about the structure of the lattice of all <i>S</i>-preclones on <i>A</i>.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 3","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-024-00863-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141568120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the networks of large embeddings 关于大型嵌入网络
IF 0.6 4区 数学
Algebra Universalis Pub Date : 2024-07-09 DOI: 10.1007/s00012-024-00862-8
Tuğba Aslan, Mohamed Khaled, Gergely Székely
{"title":"On the networks of large embeddings","authors":"Tuğba Aslan,&nbsp;Mohamed Khaled,&nbsp;Gergely Székely","doi":"10.1007/s00012-024-00862-8","DOIUrl":"10.1007/s00012-024-00862-8","url":null,"abstract":"<div><p>We define a special network that exhibits the large embeddings in any class of similar algebras. With the aid of this network, we introduce a notion of distance that conceivably counts the minimum number of dissimilarities, in a sense, between two given algebras in the class in hand; with the possibility that this distance may take the value <span>(infty )</span>. We display a number of inspirational examples from different areas of algebra, e.g., group theory and monounary algebras, to show that this research direction can be quite remarkable.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 3","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-024-00862-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141568116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Freudenthal and other compactifications of continuous frames 弗赖登塔尔法和其他连续框架压缩法
IF 0.6 4区 数学
Algebra Universalis Pub Date : 2024-07-04 DOI: 10.1007/s00012-024-00857-5
Simo Mthethwa, Gugulethu Nogwebela
{"title":"The Freudenthal and other compactifications of continuous frames","authors":"Simo Mthethwa,&nbsp;Gugulethu Nogwebela","doi":"10.1007/s00012-024-00857-5","DOIUrl":"10.1007/s00012-024-00857-5","url":null,"abstract":"<div><p>The <i>N</i>-star compactifications of frames are the frame-theoretic counterpart of the <i>N</i>-point compactifications of locally compact Hausdorff spaces. A <span>(pi )</span>-compactification of a frame <i>L</i> is a compactification constructed using a special type of a basis called a <span>(pi )</span>-compact basis; the Freudenthal compactification is the largest <span>(pi )</span>-compactification of a rim-compact frame. As one of the main results, we show that the Freudenthal compactification of a regular continuous frame is the least upper bound for the set of all <i>N</i>-star compactifications. A compactification whose right adjoint preserves disjoint binary joins is called perfect. We establish a class of frames for which <i>N</i>-star compactifications are always perfect. For the class of zero-dimensional frames, we construct a compactification which is isomorphic to the Banaschewski compactification and the Freudenthal compactification; in some special case, this compactification is isomorphic to the Stone–Čech compactification.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 3","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-024-00857-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unilinear residuated lattices: axiomatization, varieties and FEP 单线性残差网格:公理化、品种和 FEP
IF 0.6 4区 数学
Algebra Universalis Pub Date : 2024-06-21 DOI: 10.1007/s00012-024-00856-6
Nikolaos Galatos, Xiao Zhuang
{"title":"Unilinear residuated lattices: axiomatization, varieties and FEP","authors":"Nikolaos Galatos,&nbsp;Xiao Zhuang","doi":"10.1007/s00012-024-00856-6","DOIUrl":"10.1007/s00012-024-00856-6","url":null,"abstract":"<div><p>We characterize all residuated lattices that have height equal to 3 and show that the variety they generate has continuum-many subvarieties. More generally, we study unilinear residuated lattices: their lattice is a union of disjoint incomparable chains, with bounds added. We we give two general constructions of unilinear residuated lattices, provide an axiomatization and a proof-theoretic calculus for the variety they generate, and prove the finite model property for various subvarieties.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 3","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A structure theorem for truncations on an Archimedean vector lattice 阿基米德向量网格截断的结构定理
IF 0.6 4区 数学
Algebra Universalis Pub Date : 2024-06-21 DOI: 10.1007/s00012-024-00858-4
Karim Boulabiar
{"title":"A structure theorem for truncations on an Archimedean vector lattice","authors":"Karim Boulabiar","doi":"10.1007/s00012-024-00858-4","DOIUrl":"10.1007/s00012-024-00858-4","url":null,"abstract":"<div><p>Let <i>X</i> be an Archimedean vector lattice and <span>(X_{+})</span> denote the positive cone of <i>X</i>. A unary operation <span>(varpi )</span> on <span>(X_{+})</span> is called a truncation on <i>X</i> if </p><div><div><span>$$begin{aligned} xwedge varpi left( yright) =varpi left( xright) wedge yquad text {for all }x,yin X_{+}. end{aligned}$$</span></div></div><p>Let <span>(X^{u})</span> denote the universal completion of <i>X</i> with a distinguished weak element <span>(e&gt;0.)</span> It is shown that a unary operation <span>(varpi )</span> on <span>(X_{+})</span> is a truncation on <i>X</i> if and only if there exists an element <span>(uin X^{u})</span> and a component <i>p</i> of <i>e</i> such that </p><div><div><span>$$begin{aligned} pwedge u=0quad text {and}quad varpi left( xright) =px+uwedge x text {for all }xin X_{+}. end{aligned}$$</span></div></div><p>Here, <i>px</i> is the product of <i>p</i> and <i>x</i> with respect to the unique lattice-ordered multiplication in <span>(X^{u})</span> having <i>e</i> as identity. As an example of illustration, if <span>(varpi )</span> is a truncation on some <span>(L_{p}left( {mu } right) )</span>-space then there exists a measurable set <i>A</i> and a function <span>(uin L_{0}left( {mu } right) )</span> vanishing on <i>A</i> such that <span>(varpi left( xright) =1_{A}x+uwedge x)</span> for all <span>(xin L_{p}left( {mu } right) .)</span></p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 3","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of self-majorizing elements in Archimedean vector lattices 阿基米德向量网格中自约化元素的特征
IF 0.6 4区 数学
Algebra Universalis Pub Date : 2024-06-19 DOI: 10.1007/s00012-024-00860-w
Zied Jbeli, Mohamed Ali Toumi
{"title":"Characterization of self-majorizing elements in Archimedean vector lattices","authors":"Zied Jbeli,&nbsp;Mohamed Ali Toumi","doi":"10.1007/s00012-024-00860-w","DOIUrl":"10.1007/s00012-024-00860-w","url":null,"abstract":"<div><p>In this paper, new purely topological approaches are furnished in order to characterize self-majorizing elements in an Archimedean vector lattice <i>A</i>. More precisely, it is shown that an element <span>(0&lt;fin A)</span> is a self-majorizing element if and only if every <i>f</i>-maximal order ideal of <i>A</i> is relatively uniformly closed. In addition, it is proved that self-majorizing elements are characterized via the hull–kernel topology on both the set of all proper prime order ideals <span>({mathcal {P}})</span> and on the set of all <i>g</i>-maximal order ideals <span>({mathcal {Q}})</span> of <i>A</i>,  for all <span>(gin A^{+}.)</span> In fact, the set of all prime order ideals of <i>A</i> not containing <i>f</i> (respectively, the set of all <i>g</i>-maximal order ideals of <i>A</i> not containing <i>f</i>,  for all <span>(gin A^{+}))</span> is a closed with respect to the hull–kernel topology on <span>({mathcal {P}})</span> (respectively, on <span>({mathcal {Q}}))</span> if and only if <i>f</i> is a self-majorizing element in <i>A</i>.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 3","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slim patch lattices as absolute retracts and maximal lattices 作为绝对缩回和最大网格的薄片网格
IF 0.6 4区 数学
Algebra Universalis Pub Date : 2024-06-17 DOI: 10.1007/s00012-024-00861-9
Gábor Czédli
{"title":"Slim patch lattices as absolute retracts and maximal lattices","authors":"Gábor Czédli","doi":"10.1007/s00012-024-00861-9","DOIUrl":"10.1007/s00012-024-00861-9","url":null,"abstract":"<div><p>We prove that <i>slim patch lattices</i> are exactly the <i>absolute retracts</i> with more than two elements for the category of slim semimodular lattices with length-preserving lattice embeddings as morphisms. Also, slim patch lattices are the same as the <i>maximal objects</i> <i>L</i> in this category such that <span>(|L|&gt;2.)</span> Furthermore, slim patch lattices are characterized as the <i>algebraically closed lattices</i> <i>L</i> in this category such that <span>(|L|&gt;2.)</span> Finally, we prove that if we consider <span>({0,1})</span>-preserving lattice homomorphisms rather than length-preserving ones, then the absolute retracts for the class of slim semimodular lattices are the at most 4-element boolean lattices.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 3","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Permutation invariant boolean states 排列不变布尔态
IF 0.6 4区 数学
Algebra Universalis Pub Date : 2024-06-06 DOI: 10.1007/s00012-024-00859-3
Daniele Mundici
{"title":"Permutation invariant boolean states","authors":"Daniele Mundici","doi":"10.1007/s00012-024-00859-3","DOIUrl":"10.1007/s00012-024-00859-3","url":null,"abstract":"<div><p>We give a self-contained proof of the following result: Finitely additive probability measures (also known as “states”) of the free boolean algebra <span>({mathsf F}_omega )</span> over the free generating set <span>({X_1,X_2,ldots })</span> having the invariance property under finite permutations of the <span>(X_i)</span>, coincide with states lying in the closure of the set of convex combinations of product states of <span>({mathsf F}_omega )</span> in the vector space <span>(mathbb R^{{mathsf F}_omega })</span> equipped with the product topology. De Finetti’s celebrated exchangeability theorem can be easily recovered from our proof.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 3","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141378878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信