{"title":"可表示分布拟关系代数","authors":"Andrew Craig, Claudette Robinson","doi":"10.1007/s00012-025-00884-w","DOIUrl":null,"url":null,"abstract":"<div><p>We give a definition of representability for distributive quasi relation algebras (DqRAs). These algebras are a generalisation of relation algebras and were first described by Galatos and Jipsen (Algebra Univers 69:1–21, 2013). Our definition uses a construction that starts with a poset. The algebra is concretely constructed as the lattice of upsets of a partially ordered equivalence relation. The key to defining the three negation-like unary operations is to impose certain symmetry requirements on the partial order. Our definition of representable distributive quasi relation algebras is easily seen to be a generalisation of the definition of representable relations algebras by Jónsson and Tarski (AMS 54:89, 1948). We give examples of representable DqRAs and give a necessary condition for an algebra to be finitely representable. We leave open the questions of whether every DqRA is representable, and also whether the class of representable DqRAs forms a variety. Moreover, our definition provides many other opportunities for investigations in the spirit of those carried out for representable relation algebras.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"86 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-025-00884-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Representable distributive quasi relation algebras\",\"authors\":\"Andrew Craig, Claudette Robinson\",\"doi\":\"10.1007/s00012-025-00884-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give a definition of representability for distributive quasi relation algebras (DqRAs). These algebras are a generalisation of relation algebras and were first described by Galatos and Jipsen (Algebra Univers 69:1–21, 2013). Our definition uses a construction that starts with a poset. The algebra is concretely constructed as the lattice of upsets of a partially ordered equivalence relation. The key to defining the three negation-like unary operations is to impose certain symmetry requirements on the partial order. Our definition of representable distributive quasi relation algebras is easily seen to be a generalisation of the definition of representable relations algebras by Jónsson and Tarski (AMS 54:89, 1948). We give examples of representable DqRAs and give a necessary condition for an algebra to be finitely representable. We leave open the questions of whether every DqRA is representable, and also whether the class of representable DqRAs forms a variety. Moreover, our definition provides many other opportunities for investigations in the spirit of those carried out for representable relation algebras.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":\"86 2\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00012-025-00884-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-025-00884-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-025-00884-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Representable distributive quasi relation algebras
We give a definition of representability for distributive quasi relation algebras (DqRAs). These algebras are a generalisation of relation algebras and were first described by Galatos and Jipsen (Algebra Univers 69:1–21, 2013). Our definition uses a construction that starts with a poset. The algebra is concretely constructed as the lattice of upsets of a partially ordered equivalence relation. The key to defining the three negation-like unary operations is to impose certain symmetry requirements on the partial order. Our definition of representable distributive quasi relation algebras is easily seen to be a generalisation of the definition of representable relations algebras by Jónsson and Tarski (AMS 54:89, 1948). We give examples of representable DqRAs and give a necessary condition for an algebra to be finitely representable. We leave open the questions of whether every DqRA is representable, and also whether the class of representable DqRAs forms a variety. Moreover, our definition provides many other opportunities for investigations in the spirit of those carried out for representable relation algebras.
期刊介绍:
Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.