{"title":"Multisorted Boolean clones determined by binary relations up to minion homomorphisms","authors":"Libor Barto, Maryia Kapytka","doi":"10.1007/s00012-024-00878-0","DOIUrl":"10.1007/s00012-024-00878-0","url":null,"abstract":"<div><p>We describe the ordering of a class of clones by minion homomorphisms, also known as minor preserving maps or height 1 clone homomorphisms. The class consists of all clones on finite sets determined by binary relations whose projections to both coordinates have at most two elements. This class can be alternatively described up to minion homomorphisms as the class of multisorted Boolean clones determined by binary relations. We also introduce and apply the concept of a minion core which provides canonical representatives for equivalence classes of clones, more generally minions, on finite sets.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring new topologies for the theory of clones","authors":"Antonio Bucciarelli, Antonino Salibra","doi":"10.1007/s00012-024-00877-1","DOIUrl":"10.1007/s00012-024-00877-1","url":null,"abstract":"<div><p>Clones of operations of arity <span>(omega )</span> (referred to as <span>(omega )</span>-operations) have been employed by Neumann to represent varieties of infinitary algebras defined by operations of at most arity <span>(omega )</span>. More recently, clone algebras have been introduced to study clones of functions, including <span>(omega )</span>-operations, within the framework of one-sorted universal algebra. Additionally, polymorphisms of arity <span>(omega )</span>, which are <span>(omega )</span>-operations preserving the relations of a given first-order structure, have recently been used to establish model theory results with applications in the field of complexity of CSP problems. In this paper, we undertake a topological and algebraic study of polymorphisms of arity <span>(omega )</span> and their corresponding invariant relations. Given a Boolean ideal <i>X</i> on the set <span>(A^omega )</span>, we endow the set of <span>(omega )</span>-operations on <i>A</i> with a topology, which we refer to as <i>X</i>-topology. Notably, the topology of pointwise convergence can be retrieved as a special case of this approach. Polymorphisms and invariant relations are then defined parametrically with respect to the <i>X</i>-topology. We characterise the <i>X</i>-closed clones of <span>(omega )</span>-operations in terms of <span>(textrm{Pol}^omega )</span>-<span>(textrm{Inv}^omega )</span> and present a method to relate <span>(textrm{Inv}^omega )</span>-<span>(textrm{Pol}^omega )</span> to the classical (finitary) <span>(textrm{Inv})</span>-<span>(textrm{Pol})</span>.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graphs of finite algebras: edges, and connectivity","authors":"Andrei A. Bulatov","doi":"10.1007/s00012-024-00865-5","DOIUrl":"10.1007/s00012-024-00865-5","url":null,"abstract":"<div><p>We refine and advance the study of the local structure of idempotent finite algebras started in Bulatov (LICS, 2004). We introduce a graph-like structure on an arbitrary finite idempotent algebra including those admitting type <b>1</b>. We show that this graph is connected, its edges can be classified into 4 types corresponding to the local behavior (set, semilattice, majority, or affine) of certain term operations. We also show that if the variety generated by the algebra omits type <b>1</b>, then the structure of the algebra can be ‘improved’ without introducing type <b>1</b> by choosing an appropriate reduct of the original algebra. Taylor minimal idempotent algebras introduced recently are a special case of such reducts. Then we refine this structure demonstrating that the edges of the graph of an algebra omitting type <b>1</b> can be made ‘thin’, that is, there are term operations that behave very similar to semilattice, majority, or affine operations on 2-element subsets of the algebra. Finally, we prove certain connectivity properties of the refined structures. This research is motivated by the study of the Constraint Satisfaction Problem, although the problem itself does not really show up in this paper.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some remarks on type n lattice-ordered algebras and a question of Huijsmans","authors":"Ayşe Uyar","doi":"10.1007/s00012-024-00875-3","DOIUrl":"10.1007/s00012-024-00875-3","url":null,"abstract":"<div><p>In this paper, type <i>n</i> lattice-ordered algebras are introduced and a characterization is given for those of type 0 and type 1. Moreover we investigate the question: Let <i>A</i> be a lattice-ordered algebra with unit element <span>(e >0)</span> in which every positive element has an inverse. Under what conditions <i>A</i> is lattice and algebra isomorphic to <span>({mathbb {R}})</span> ? We have shown that for certain algebras the question has a positive answer, generalizing thus a result of Scheffold. We also obtained a result similar to Edwards’ Theorem for normed lattice-ordered algebras.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graphs of finite algebras: maximality, rectangularity, and decomposition","authors":"Andrei A. Bulatov","doi":"10.1007/s00012-024-00874-4","DOIUrl":"10.1007/s00012-024-00874-4","url":null,"abstract":"<div><p>In this paper we continue the study of edge-colored graphs associated with finite idempotent algebras initiated in [Bulatov, “Local structure of idempotent algebras I”, CoRR, abs/2006.09599, 2020.]. We prove stronger connectivity properties of such graphs that will allows us to demonstrate several useful structural features of subdirect products of idempotent algebras such as rectangularity and 2-decomposition.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Universal slices of the category of graphs","authors":"Ioannis Eleftheriadis","doi":"10.1007/s00012-024-00870-8","DOIUrl":"10.1007/s00012-024-00870-8","url":null,"abstract":"<div><p>We characterise the slices of the category of graphs that are algebraically universal in terms of the structure of the slicing graph. In particular, we show that algebraic universality is obtained if, and only if, the slicing graph contains one of four fixed graphs as a subgraph.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-024-00870-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decomposition of (hbox {d}_{text {0}})-algebras","authors":"Anna Avallone, Paolo Vitolo","doi":"10.1007/s00012-024-00871-7","DOIUrl":"10.1007/s00012-024-00871-7","url":null,"abstract":"<div><p>We generalize to <span>(hbox {d}_{text {0}})</span>-algebras a result of Riečanová about the decomposition of a D-lattice by means of a family of central elements.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jelena Jovanović, Branimir Šešelja, Andreja Tepavčević
{"title":"Nilpotent groups in lattice framework","authors":"Jelena Jovanović, Branimir Šešelja, Andreja Tepavčević","doi":"10.1007/s00012-024-00873-5","DOIUrl":"10.1007/s00012-024-00873-5","url":null,"abstract":"<div><p>In the framework of weak congruence lattices, many classes of groups have been characterized up to now, in completely lattice-theoretic terms. In this note, the center of the group is captured lattice-theoretically and nilpotent groups are characterized by lattice properties.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Odd and even Fibonacci lattices arising from a Garside monoid","authors":"Thomas Gobet, Baptiste Rognerud","doi":"10.1007/s00012-024-00867-3","DOIUrl":"10.1007/s00012-024-00867-3","url":null,"abstract":"<div><p>We study two families of lattices whose number of elements are given by the numbers in even (respectively odd) positions in the Fibonacci sequence. The even Fibonacci lattice arises as the lattice of simple elements of a Garside monoid partially ordered by left-divisibility, and the odd Fibonacci lattice is an order ideal in the even one. We give a combinatorial proof of the lattice property, relying on a description of words for the Garside element in terms of Schröder trees, and on a recursive description of the even Fibonacci lattice. This yields an explicit formula to calculate meets and joins in the lattice. As a byproduct we also obtain that the number of words for the Garside element is given by a little Schröder number.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cartesian closed varieties I: the classification theorem","authors":"Richard Garner","doi":"10.1007/s00012-024-00869-1","DOIUrl":"10.1007/s00012-024-00869-1","url":null,"abstract":"<div><p>In 1990, Johnstone gave a syntactic characterisation of the equational theories whose associated varieties are cartesian closed. Among such theories are all <i>unary</i> theories—whose models are sets equipped with an action by a monoid <i>M</i>—and all <i>hyperaffine</i> theories—whose models are sets with an action by a Boolean algebra <i>B</i>. We improve on Johnstone’s result by showing that an equational theory is cartesian closed just when its operations have a unique hyperaffine–unary decomposition. It follows that any non-degenerate cartesian closed variety is a variety of sets equipped with compatible actions by a monoid <i>M</i> and a Boolean algebra <i>B</i>; this is the classification theorem of the title.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-024-00869-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}