The Priestley duality for \(\prec \)-distributive \(\vee \)-predomains

IF 0.6 4区 数学 Q3 MATHEMATICS
Ao Shen, Xiaodong Jia, Hualin Miao, Qingguo Li
{"title":"The Priestley duality for \\(\\prec \\)-distributive \\(\\vee \\)-predomains","authors":"Ao Shen,&nbsp;Xiaodong Jia,&nbsp;Hualin Miao,&nbsp;Qingguo Li","doi":"10.1007/s00012-025-00907-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a Priestley-type topological representation for <span>\\(\\prec \\)</span>-distributive <span>\\(\\vee \\)</span>-predomains, thereby answering an open problem posed by T. Bice. Moreover, we establish a dual equivalence between the category of <span>\\(\\prec \\)</span>-distributive <span>\\(\\vee \\)</span>-predomains with <span>\\(\\prec \\)</span>-morphisms and that of DP-compact pospaces with DP-morphisms. In particular, our results restrict to Hansoul-Poussart duality for bounded distributive sup-semilattices and to a Priestley duality for continuous frames.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"86 4","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-025-00907-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a Priestley-type topological representation for \(\prec \)-distributive \(\vee \)-predomains, thereby answering an open problem posed by T. Bice. Moreover, we establish a dual equivalence between the category of \(\prec \)-distributive \(\vee \)-predomains with \(\prec \)-morphisms and that of DP-compact pospaces with DP-morphisms. In particular, our results restrict to Hansoul-Poussart duality for bounded distributive sup-semilattices and to a Priestley duality for continuous frames.

\(\prec \) -分布\(\vee \) -前域的Priestley对偶性
在本文中,我们提出了\(\prec \) -分布\(\vee \) -预域的priestley型拓扑表示,从而回答了T. Bice提出的开放问题。此外,我们建立了具有\(\prec \) -态射的\(\prec \) -分布\(\vee \) -前域的范畴与具有dp -态射的dp -紧序空间的范畴之间的对偶等价。特别地,我们的结果局限于有界分布超半格的Hansoul-Poussart对偶和连续坐标系的Priestley对偶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信