Ádám Kunos, Benoît Larose, David Emmanuel Pazmiño Pullas
{"title":"Słupecki digraphs","authors":"Ádám Kunos, Benoît Larose, David Emmanuel Pazmiño Pullas","doi":"10.1007/s00012-025-00900-z","DOIUrl":null,"url":null,"abstract":"<div><p>Call a finite relational structure <i>k-Słupecki</i> if its only surjective <i>k</i>-ary polymorphisms are essentially unary, and <i>Słupecki</i> if it is <i>k</i>-Słupecki for all <span>\\(k \\ge 2\\)</span>. We present conditions, some necessary and some sufficient, for a reflexive digraph to be Słupecki. We prove that all digraphs that triangulate a 1-sphere are Słupecki, as are all the ordinal sums <span>\\(m \\oplus n\\)</span> (<span>\\(m,n \\ge 2\\)</span>). We prove that the posets <span>\\(\\mathbb {P}= m \\oplus n \\oplus k\\)</span> are not 3-Słupecki for <span>\\(m,n,k \\ge 2\\)</span>, and prove there is a bound <i>B</i>(<i>m</i>, <i>k</i>) such that <span>\\(\\mathbb {P}\\)</span> is 2-Słupecki if and only if <span>\\(n > B(m,k)+1\\)</span>; in particular there exist posets that are 2-Słupecki but not 3-Słupecki.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"86 4","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-025-00900-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-025-00900-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果有限关系结构的唯一满射k元多态性本质上是一元的,则称其为k-Słupecki;如果所有\(k \ge 2\)都是k-Słupecki,则称其为Słupecki。我们给出了一个自反有向图为Słupecki的必要和充分条件。我们证明了所有三角化1球的有向图都是Słupecki,所有序数和都是\(m \oplus n\) (\(m,n \ge 2\))。我们证明了\(m,n,k \ge 2\)的偏序集\(\mathbb {P}= m \oplus n \oplus k\)不是3-Słupecki,并且证明了存在一个界B(m, k)使得\(\mathbb {P}\)是2-Słupecki当且仅当\(n > B(m,k)+1\);特别是存在2-Słupecki而不是3-Słupecki的poset。
Call a finite relational structure k-Słupecki if its only surjective k-ary polymorphisms are essentially unary, and Słupecki if it is k-Słupecki for all \(k \ge 2\). We present conditions, some necessary and some sufficient, for a reflexive digraph to be Słupecki. We prove that all digraphs that triangulate a 1-sphere are Słupecki, as are all the ordinal sums \(m \oplus n\) (\(m,n \ge 2\)). We prove that the posets \(\mathbb {P}= m \oplus n \oplus k\) are not 3-Słupecki for \(m,n,k \ge 2\), and prove there is a bound B(m, k) such that \(\mathbb {P}\) is 2-Słupecki if and only if \(n > B(m,k)+1\); in particular there exist posets that are 2-Słupecki but not 3-Słupecki.
期刊介绍:
Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.