IF 0.6 4区 数学 Q3 MATHEMATICS
Ádám Kunos, Benoît Larose, David Emmanuel Pazmiño Pullas
{"title":"Słupecki digraphs","authors":"Ádám Kunos,&nbsp;Benoît Larose,&nbsp;David Emmanuel Pazmiño Pullas","doi":"10.1007/s00012-025-00900-z","DOIUrl":null,"url":null,"abstract":"<div><p>Call a finite relational structure <i>k-Słupecki</i> if its only surjective <i>k</i>-ary polymorphisms are essentially unary, and <i>Słupecki</i> if it is <i>k</i>-Słupecki for all <span>\\(k \\ge 2\\)</span>. We present conditions, some necessary and some sufficient, for a reflexive digraph to be Słupecki. We prove that all digraphs that triangulate a 1-sphere are Słupecki, as are all the ordinal sums <span>\\(m \\oplus n\\)</span> (<span>\\(m,n \\ge 2\\)</span>). We prove that the posets <span>\\(\\mathbb {P}= m \\oplus n \\oplus k\\)</span> are not 3-Słupecki for <span>\\(m,n,k \\ge 2\\)</span>, and prove there is a bound <i>B</i>(<i>m</i>, <i>k</i>) such that <span>\\(\\mathbb {P}\\)</span> is 2-Słupecki if and only if <span>\\(n &gt; B(m,k)+1\\)</span>; in particular there exist posets that are 2-Słupecki but not 3-Słupecki.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"86 4","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-025-00900-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-025-00900-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果有限关系结构的唯一满射k元多态性本质上是一元的,则称其为k-Słupecki;如果所有\(k \ge 2\)都是k-Słupecki,则称其为Słupecki。我们给出了一个自反有向图为Słupecki的必要和充分条件。我们证明了所有三角化1球的有向图都是Słupecki,所有序数和都是\(m \oplus n\) (\(m,n \ge 2\))。我们证明了\(m,n,k \ge 2\)的偏序集\(\mathbb {P}= m \oplus n \oplus k\)不是3-Słupecki,并且证明了存在一个界B(m, k)使得\(\mathbb {P}\)是2-Słupecki当且仅当\(n > B(m,k)+1\);特别是存在2-Słupecki而不是3-Słupecki的poset。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Słupecki digraphs

Call a finite relational structure k-Słupecki if its only surjective k-ary polymorphisms are essentially unary, and Słupecki if it is k-Słupecki for all \(k \ge 2\). We present conditions, some necessary and some sufficient, for a reflexive digraph to be Słupecki. We prove that all digraphs that triangulate a 1-sphere are Słupecki, as are all the ordinal sums \(m \oplus n\) (\(m,n \ge 2\)). We prove that the posets \(\mathbb {P}= m \oplus n \oplus k\) are not 3-Słupecki for \(m,n,k \ge 2\), and prove there is a bound B(mk) such that \(\mathbb {P}\) is 2-Słupecki if and only if \(n > B(m,k)+1\); in particular there exist posets that are 2-Słupecki but not 3-Słupecki.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信