关于根子模和\( z \) -子模的完全格

IF 0.6 4区 数学 Q3 MATHEMATICS
Hosein Fazaeli Moghimi, Seyedeh Fatemeh Mohebian
{"title":"关于根子模和\\( z \\) -子模的完全格","authors":"Hosein Fazaeli Moghimi,&nbsp;Seyedeh Fatemeh Mohebian","doi":"10.1007/s00012-024-00880-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>M</i> be a module over a commutative ring <i>R</i>, and <span>\\(\\mathcal {R}(_{R}M)\\)</span> denote the complete lattice of radical submodules of <i>M</i>. It is shown that if <i>M</i> is a multiplication <i>R</i>-module, then <span>\\(\\mathcal {R}(_{R}M)\\)</span> is a frame. In particular, if <i>M</i> is a finitely generated multiplication <i>R</i>-module, then <span>\\(\\mathcal {R}(_{R}M)\\)</span> is a coherent frame and if, in addition, <i>M</i> is faithful, then the assignment <span>\\(N\\mapsto (N:M)_{ z }\\)</span> defines a coherent map from <span>\\(\\mathcal {R}(_{R}M)\\)</span> to the coherent frame <span>\\(\\mathcal {Z}(_{R}R)\\)</span> of <span>\\( z \\)</span>-ideals of <i>R</i>. As a generalization of <span>\\( z \\)</span>-ideals, a proper submodule <i>N</i> of <i>M</i> is called a <span>\\( z \\)</span>-submodule of <i>M</i> if for any <span>\\(x\\in M\\)</span> and <span>\\(y\\in N\\)</span> such that every maximal submodule of <i>M</i> containing <i>y</i> also contains <i>x</i>, then <span>\\(x\\in N\\)</span>. The set of <span>\\( z \\)</span>-submodules of <i>M</i>, denoted <span>\\(\\mathcal {Z}(_{R}M)\\)</span>, forms a complete lattice with respect to the order of inclusion. It is shown that if <i>M</i> is a finitely generated faithful multiplication <i>R</i>-module, then <span>\\(\\mathcal {Z}(_{R}M)\\)</span> is a coherent frame and the assignment <span>\\(N\\mapsto N_{ z }\\)</span> (where <span>\\(N_{ z }\\)</span> is the intersection of all <span>\\( z \\)</span>-submodules of <i>M</i> containing <i>N</i>) is a surjective coherent map from <span>\\(\\mathcal {R}(_{R}M)\\)</span> to <span>\\(\\mathcal {Z}(_{R}M)\\)</span>. In particular, in this case, <span>\\(\\mathcal {R}(_{R}M)\\)</span> is a normal frame if and only if <span>\\(\\mathcal {Z}(_{R}M)\\)</span> is a normal frame.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"86 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On complete lattices of radical submodules and \\\\( z \\\\)-submodules\",\"authors\":\"Hosein Fazaeli Moghimi,&nbsp;Seyedeh Fatemeh Mohebian\",\"doi\":\"10.1007/s00012-024-00880-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>M</i> be a module over a commutative ring <i>R</i>, and <span>\\\\(\\\\mathcal {R}(_{R}M)\\\\)</span> denote the complete lattice of radical submodules of <i>M</i>. It is shown that if <i>M</i> is a multiplication <i>R</i>-module, then <span>\\\\(\\\\mathcal {R}(_{R}M)\\\\)</span> is a frame. In particular, if <i>M</i> is a finitely generated multiplication <i>R</i>-module, then <span>\\\\(\\\\mathcal {R}(_{R}M)\\\\)</span> is a coherent frame and if, in addition, <i>M</i> is faithful, then the assignment <span>\\\\(N\\\\mapsto (N:M)_{ z }\\\\)</span> defines a coherent map from <span>\\\\(\\\\mathcal {R}(_{R}M)\\\\)</span> to the coherent frame <span>\\\\(\\\\mathcal {Z}(_{R}R)\\\\)</span> of <span>\\\\( z \\\\)</span>-ideals of <i>R</i>. As a generalization of <span>\\\\( z \\\\)</span>-ideals, a proper submodule <i>N</i> of <i>M</i> is called a <span>\\\\( z \\\\)</span>-submodule of <i>M</i> if for any <span>\\\\(x\\\\in M\\\\)</span> and <span>\\\\(y\\\\in N\\\\)</span> such that every maximal submodule of <i>M</i> containing <i>y</i> also contains <i>x</i>, then <span>\\\\(x\\\\in N\\\\)</span>. The set of <span>\\\\( z \\\\)</span>-submodules of <i>M</i>, denoted <span>\\\\(\\\\mathcal {Z}(_{R}M)\\\\)</span>, forms a complete lattice with respect to the order of inclusion. It is shown that if <i>M</i> is a finitely generated faithful multiplication <i>R</i>-module, then <span>\\\\(\\\\mathcal {Z}(_{R}M)\\\\)</span> is a coherent frame and the assignment <span>\\\\(N\\\\mapsto N_{ z }\\\\)</span> (where <span>\\\\(N_{ z }\\\\)</span> is the intersection of all <span>\\\\( z \\\\)</span>-submodules of <i>M</i> containing <i>N</i>) is a surjective coherent map from <span>\\\\(\\\\mathcal {R}(_{R}M)\\\\)</span> to <span>\\\\(\\\\mathcal {Z}(_{R}M)\\\\)</span>. In particular, in this case, <span>\\\\(\\\\mathcal {R}(_{R}M)\\\\)</span> is a normal frame if and only if <span>\\\\(\\\\mathcal {Z}(_{R}M)\\\\)</span> is a normal frame.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-024-00880-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-024-00880-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设M是可交换环R上的一个模,并且 \(\mathcal {R}(_{R}M)\) 表示M的根子模的完备格。证明了如果M是一个r -模的乘法,则 \(\mathcal {R}(_{R}M)\) 是一个框架。特别地,如果M是一个有限生成的乘法r模,那么 \(\mathcal {R}(_{R}M)\) 是一个连贯的框架,如果M是忠实的,那么赋值 \(N\mapsto (N:M)_{ z }\) 定义从的连贯映射 \(\mathcal {R}(_{R}M)\) 到相干坐标系 \(\mathcal {Z}(_{R}R)\) 的 \( z \)- r的理想 \( z \)-理想,M的固有子模N称为a \( z \)- M的子模块if for any \(x\in M\) 和 \(y\in N\) 使得M的每一个包含y的极大子模也包含x,那么 \(x\in N\)。的集合 \( z \)- M的子模块,记为 \(\mathcal {Z}(_{R}M)\),就包含的顺序形成一个完备的格。证明了如果M是一个有限生成的忠实乘法r模,则 \(\mathcal {Z}(_{R}M)\) 框架和作业是一致的吗 \(N\mapsto N_{ z }\) (哪里 \(N_{ z }\) 是一切的交集吗 \( z \)- M的子模块包含N)是一个满射相干映射 \(\mathcal {R}(_{R}M)\) 到 \(\mathcal {Z}(_{R}M)\)。特别是,在这种情况下, \(\mathcal {R}(_{R}M)\) 正常坐标系当且仅当 \(\mathcal {Z}(_{R}M)\) 是一个正常的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On complete lattices of radical submodules and \( z \)-submodules

Let M be a module over a commutative ring R, and \(\mathcal {R}(_{R}M)\) denote the complete lattice of radical submodules of M. It is shown that if M is a multiplication R-module, then \(\mathcal {R}(_{R}M)\) is a frame. In particular, if M is a finitely generated multiplication R-module, then \(\mathcal {R}(_{R}M)\) is a coherent frame and if, in addition, M is faithful, then the assignment \(N\mapsto (N:M)_{ z }\) defines a coherent map from \(\mathcal {R}(_{R}M)\) to the coherent frame \(\mathcal {Z}(_{R}R)\) of \( z \)-ideals of R. As a generalization of \( z \)-ideals, a proper submodule N of M is called a \( z \)-submodule of M if for any \(x\in M\) and \(y\in N\) such that every maximal submodule of M containing y also contains x, then \(x\in N\). The set of \( z \)-submodules of M, denoted \(\mathcal {Z}(_{R}M)\), forms a complete lattice with respect to the order of inclusion. It is shown that if M is a finitely generated faithful multiplication R-module, then \(\mathcal {Z}(_{R}M)\) is a coherent frame and the assignment \(N\mapsto N_{ z }\) (where \(N_{ z }\) is the intersection of all \( z \)-submodules of M containing N) is a surjective coherent map from \(\mathcal {R}(_{R}M)\) to \(\mathcal {Z}(_{R}M)\). In particular, in this case, \(\mathcal {R}(_{R}M)\) is a normal frame if and only if \(\mathcal {Z}(_{R}M)\) is a normal frame.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信