Characterizations of U-frames and frames that are finitely a U-frame

IF 0.6 4区 数学 Q3 MATHEMATICS
Batsile Tlharesakgosi
{"title":"Characterizations of U-frames and frames that are finitely a U-frame","authors":"Batsile Tlharesakgosi","doi":"10.1007/s00012-025-00888-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we give algebraic characterizations of <i>U</i>-frames in terms of ring-theoretic properties of the ring <span>\\(\\mathcal {R}L\\)</span> of real-valued continuous functions on a completely regular frame <i>L</i>. We show that a frame is a <i>U</i>-frame if and only if it is an <i>F</i>-frame and its Čech–Stone compactification is zero-dimensional. We will also introduce frames that are finitely a <i>U</i>-frame and we will characterize them in terms of ring-theoretic properties in <span>\\(\\mathcal {R}L\\)</span>.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"86 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-025-00888-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-025-00888-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we give algebraic characterizations of U-frames in terms of ring-theoretic properties of the ring \(\mathcal {R}L\) of real-valued continuous functions on a completely regular frame L. We show that a frame is a U-frame if and only if it is an F-frame and its Čech–Stone compactification is zero-dimensional. We will also introduce frames that are finitely a U-frame and we will characterize them in terms of ring-theoretic properties in \(\mathcal {R}L\).

在这篇文章中,我们根据完全正则框架 L 上实值连续函数环 \(\mathcal {R}L\)的环理论性质给出了 U 框架的代数特征。我们证明,当且仅当一个框架是一个 F 框架并且它的Čech-Stone 压缩为零维时,它才是一个 U 框架。我们还将引入有限U框架,并用\(\mathcal {R}L\) 中的环论性质来描述它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信