Yuting Bai , Bin Yan , Chenguang Zhou , Tingli Su , Xuebo Jin
{"title":"State of art on state estimation: Kalman filter driven by machine learning","authors":"Yuting Bai , Bin Yan , Chenguang Zhou , Tingli Su , Xuebo Jin","doi":"10.1016/j.arcontrol.2023.100909","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2023.100909","url":null,"abstract":"<div><p>The Kalman filter<span> (KF) is a popular state estimation technique that is utilized in a variety of applications, including positioning and navigation, sensor networks, battery management, etc. This study presents a comprehensive review of the Kalman filter and its various enhanced models, with combining the Kalman filter with neural network methodologies. First, we provide a brief overview of the classical Kalman filter and its variants, including the extended Kalman filter<span> (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc. It is pointed out that the traditional Kalman filter faces two main problems: system model and noise model parameter identification. To overcome these obstacles, researchers have developed novel solutions by integrating machine learning techniques with the Kalman filter. Secondly, this paper classifies the related models into two categories: both the internal cross-combination of the Kalman filter and neural network and their external combinations. Two different hybrid models and typical structures show that the hybrid model performs more accurately and robustly overall. Finally, the characteristic of the two hybrid models is summarized so that readers can understand them more intuitively.</span></span></p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"56 ","pages":"Article 100909"},"PeriodicalIF":9.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49740050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A unified concurrent-composition method to state/event inference and concealment in labeled finite-state automata as discrete-event systems","authors":"Kuize Zhang","doi":"10.1016/j.arcontrol.2023.100902","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2023.100902","url":null,"abstract":"","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"56 ","pages":"100902"},"PeriodicalIF":9.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49763042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahmoud Abdelgalil, Daniel E. Ochoa, Jorge I. Poveda
{"title":"Multi-time scale control and optimization via averaging and singular perturbation theory: From ODEs to hybrid dynamical systems","authors":"Mahmoud Abdelgalil, Daniel E. Ochoa, Jorge I. Poveda","doi":"10.1016/j.arcontrol.2023.100926","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2023.100926","url":null,"abstract":"<div><p>Multi-time scale techniques based on singular perturbations and averaging theory are among the most powerful tools developed for the synthesis and analysis of feedback control algorithms. This paper introduces some of the recent advances in singular perturbation theory and averaging theory for continuous-time dynamical systems modeled as ordinary differential equations (ODEs), as well as for hybrid dynamical systems that combine continuous-time dynamics and discrete-time dynamics. Novel multi-time scale analytical tools based on higher-order averaging and singular perturbation theory are also discussed and illustrated via different examples. In the context of hybrid dynamical systems, a class of sufficient Lyapunov-based conditions for global stability results are also presented. The analytical tools are illustrated through various new architectures and algorithms within the context of adaptive and extremum-seeking systems. These tools are suitable for the study of model-free optimization and stabilization problems that require the synergistic use of continuous-time and discrete-time feedback. The paper aims to acquaint the reader with a range of modern tools for studying multi-time scale phenomena in optimization and control systems, providing some guidelines for future research in this field.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"56 ","pages":"Article 100926"},"PeriodicalIF":9.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367578823000901/pdfft?md5=bf2297a434b63cf7c9074cea71bd8782&pid=1-s2.0-S1367578823000901-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138436737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PID control of quadrotor UAVs: A survey","authors":"Ivan Lopez-Sanchez, Javier Moreno-Valenzuela","doi":"10.1016/j.arcontrol.2023.100900","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2023.100900","url":null,"abstract":"","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"56 ","pages":"100900"},"PeriodicalIF":9.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49739949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Learning quadrotor dynamics for precise, safe, and agile flight control","authors":"Alessandro Saviolo, Giuseppe Loianno","doi":"10.1016/j.arcontrol.2023.03.009","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2023.03.009","url":null,"abstract":"<div><p>This article reviews the state-of-the-art modeling and control techniques for aerial robots such as quadrotor systems and presents several future research directions in this area. The review starts by introducing the benefits and drawbacks of classic physic-based dynamic modeling and control techniques. Subsequently, the manuscript presents the key challenges to augment or replace classic techniques with data-driven approaches that can offer several key benefits in terms of flight precision, safety, adaptation, and agility.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"55 ","pages":"Pages 45-60"},"PeriodicalIF":9.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49738908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Active queue management for alleviating Internet congestion via a nonlinear differential equation with a variable delay","authors":"Hugues Mounier , Cédric Join , Emmanuel Delaleau , Michel Fliess","doi":"10.1016/j.arcontrol.2023.02.002","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2023.02.002","url":null,"abstract":"<div><p><span>Active Queue Management (AQM) for mitigating Internet congestion has been addressed via various feedback control syntheses, especially P, PI, and PID regulators, by using a linear approximation where the “round trip time,” i.e., the delay, is assumed to be constant. This constraint is lifted here by using a nonlinear modeling with a variable delay, introduced more than 20 years ago. This delay, intimately linked to the congestion phenomenon, may be viewed as “ a flat output.” All other system variables, especially the control variable, i.e., the </span>packet loss ratio, are expressed as a function of the delay and its derivatives: they are frozen if the delay is kept constant. This flatness-like property, which demonstrates the mathematical discrepancy of the linear approximation adopted until today, yields also our control strategy in two steps: Firstly, designing an open-loop control, thanks to straightforward Flatness-Based Control (FBC) techniques, and secondly, closing the loop via Model-Free Control (MFC) in order to take into account severe model mismatches, like, here, the number of TCP sessions. Several convincing computer simulations, which are easily implementable, are presented and discussed.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"55 ","pages":"Pages 61-69"},"PeriodicalIF":9.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49738910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of floating object manipulation by autonomous multi-vessel systems","authors":"Zhe Du, Rudy R. Negenborn, Vasso Reppa","doi":"10.1016/j.arcontrol.2022.10.003","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2022.10.003","url":null,"abstract":"<div><p>The regulatory endorsement of the International Maritime Organization (IMO) and the support of pivotal shipping market players in recent years motivate the investigation of the potential role that autonomous vessels play in the shipping industry. As the complexity and scale of the envisioned applications increase, research works gradually transform the focus from single-vessel systems to multi-vessel systems. Thus, autonomous multi-vessel systems applied in the shipping industry are becoming a promising research direction. One of the typical research directions is floating object manipulation by multiple tugboats.</p><p>This paper offers a comprehensive literature review of the existing research on floating object manipulation by autonomous multi-vessel systems. Based on the prior knowledge of object manipulation problems in multi-robot systems, four typical ways of maritime object manipulation are summarized: attaching, caging, pushing, and towing. The advantages and disadvantages of each manipulation way are discussed, including its typical floating object and application scenarios. Moreover, the aspects of control objective, control architecture, collision avoidance operation, disturbances consideration, and role of each involved vessel are analyzed for gaining insight into the approaches for solving these problems. Finally, challenges and future directions are highlighted to give possible inspiration.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"55 ","pages":"Pages 255-278"},"PeriodicalIF":9.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49739029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ergodic risk-sensitive control—A survey","authors":"Anup Biswas , Vivek S. Borkar","doi":"10.1016/j.arcontrol.2023.03.001","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2023.03.001","url":null,"abstract":"<div><p>Risk-sensitive control has received considerable interest since the seminal work of Howard and Matheson (Howard and Matheson, 1971/72) because of its ability to account for fluctuations about the mean, its connection with <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> control, and its application to financial mathematics. In this article we attempt to put together a comprehensive survey on the research done on ergodic risk-sensitive control over the last four decades.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"55 ","pages":"Pages 118-141"},"PeriodicalIF":9.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49739390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling, analysis and control of robot–object nonsmooth underactuated Lagrangian systems: A tutorial overview and perspectives","authors":"Bernard Brogliato","doi":"10.1016/j.arcontrol.2022.12.002","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2022.12.002","url":null,"abstract":"<div><p><span>So-called robot–object Lagrangian systems consist of a class of nonsmooth underactuated complementarity Lagrangian systems, with a specific structure: an “object” and a “robot”. Only the robot is actuated. The object dynamics can thus be controlled only through the action of the contact Lagrange multipliers, which represent the interaction forces between the robot and the object. Juggling, walking, running, hopping machines, </span>robotic systems<span><span><span> that manipulate objects, tapping, pushing systems, </span>kinematic chains<span> with joint clearance, crawling, </span></span>climbing robots, some cable-driven manipulators, and some circuits with set-valued nonsmooth components, belong this class. This article aims at presenting their main features, then many application examples which belong to the robot–object class, then reviewing the main tools and control strategies which have been proposed in the Automatic Control and in the Robotics literature. Some comments and open issues conclude the article.</span></p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"55 ","pages":"Pages 297-337"},"PeriodicalIF":9.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49762809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erick Mejia Uzeda, Mohamed A. Hafez, Mireille E. Broucke
{"title":"Learning and forgetting in systems neuroscience: A control perspective","authors":"Erick Mejia Uzeda, Mohamed A. Hafez, Mireille E. Broucke","doi":"10.1016/j.arcontrol.2023.100912","DOIUrl":"10.1016/j.arcontrol.2023.100912","url":null,"abstract":"<div><p>A longstanding open problem of systems neuroscience is to understand how the brain calibrates thousands of reflexes to achieve near instantaneous disturbance rejection. While reflexes typically act locally at the site of sensory measurements, the adaptation of reflex gains is the result of an ingenious architecture in which knowledge of disturbances is transferred from the cerebellum to the deep cerebellar nuclei or the brainstem. This paper investigates the use of control theory as the mathematical foundation to explain the mechanisms by which such forms of learning, as well as forgetting, manifest themselves in systems neuroscience. Particularly, we use adaptive control and averaging theory to model the computations performed in learning appropriate reflex gains. While forgetting is perceived as counter-productive to learning, we show that if incorporated correctly, it can endow the much needed robustness to train thousands of reflexes without interfering with their adaptation. This is accomplished using the <span><math><mi>μ</mi></math></span>-modification which achieves robustness of adaptive schemes through the estimation of exciting subspaces. Our techniques are combined in a comprehensive model, with simulations illustrating their effectiveness.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"56 ","pages":"Article 100912"},"PeriodicalIF":9.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}