基于平均和奇异摄动理论的多时间尺度控制和优化:从ode到混合动力系统

IF 7.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Mahmoud Abdelgalil, Daniel E. Ochoa, Jorge I. Poveda
{"title":"基于平均和奇异摄动理论的多时间尺度控制和优化:从ode到混合动力系统","authors":"Mahmoud Abdelgalil,&nbsp;Daniel E. Ochoa,&nbsp;Jorge I. Poveda","doi":"10.1016/j.arcontrol.2023.100926","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-time scale techniques based on singular perturbations and averaging theory are among the most powerful tools developed for the synthesis and analysis of feedback control algorithms. This paper introduces some of the recent advances in singular perturbation theory and averaging theory for continuous-time dynamical systems modeled as ordinary differential equations (ODEs), as well as for hybrid dynamical systems that combine continuous-time dynamics and discrete-time dynamics. Novel multi-time scale analytical tools based on higher-order averaging and singular perturbation theory are also discussed and illustrated via different examples. In the context of hybrid dynamical systems, a class of sufficient Lyapunov-based conditions for global stability results are also presented. The analytical tools are illustrated through various new architectures and algorithms within the context of adaptive and extremum-seeking systems. These tools are suitable for the study of model-free optimization and stabilization problems that require the synergistic use of continuous-time and discrete-time feedback. The paper aims to acquaint the reader with a range of modern tools for studying multi-time scale phenomena in optimization and control systems, providing some guidelines for future research in this field.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367578823000901/pdfft?md5=bf2297a434b63cf7c9074cea71bd8782&pid=1-s2.0-S1367578823000901-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-time scale control and optimization via averaging and singular perturbation theory: From ODEs to hybrid dynamical systems\",\"authors\":\"Mahmoud Abdelgalil,&nbsp;Daniel E. Ochoa,&nbsp;Jorge I. Poveda\",\"doi\":\"10.1016/j.arcontrol.2023.100926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-time scale techniques based on singular perturbations and averaging theory are among the most powerful tools developed for the synthesis and analysis of feedback control algorithms. This paper introduces some of the recent advances in singular perturbation theory and averaging theory for continuous-time dynamical systems modeled as ordinary differential equations (ODEs), as well as for hybrid dynamical systems that combine continuous-time dynamics and discrete-time dynamics. Novel multi-time scale analytical tools based on higher-order averaging and singular perturbation theory are also discussed and illustrated via different examples. In the context of hybrid dynamical systems, a class of sufficient Lyapunov-based conditions for global stability results are also presented. The analytical tools are illustrated through various new architectures and algorithms within the context of adaptive and extremum-seeking systems. These tools are suitable for the study of model-free optimization and stabilization problems that require the synergistic use of continuous-time and discrete-time feedback. The paper aims to acquaint the reader with a range of modern tools for studying multi-time scale phenomena in optimization and control systems, providing some guidelines for future research in this field.</p></div>\",\"PeriodicalId\":50750,\"journal\":{\"name\":\"Annual Reviews in Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1367578823000901/pdfft?md5=bf2297a434b63cf7c9074cea71bd8782&pid=1-s2.0-S1367578823000901-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reviews in Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367578823000901\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578823000901","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于奇异摄动和平均理论的多时间尺度技术是为综合和分析反馈控制算法而开发的最强大的工具之一。本文介绍了用常微分方程(ODEs)建模的连续动力系统的奇异摄动理论和平均理论,以及连续动力和离散动力相结合的混合动力系统的一些最新进展。本文还讨论了基于高阶平均和奇异摄动理论的新型多时间尺度分析工具,并通过不同的实例进行了说明。在混合动力系统中,给出了全局稳定性结果的一类充分lyapunov条件。分析工具通过各种新的架构和算法在自适应和极值搜索系统的背景下进行说明。这些工具适用于需要协同使用连续时间和离散时间反馈的无模型优化和镇定问题的研究。本文旨在向读者介绍一系列用于研究优化和控制系统中多时间尺度现象的现代工具,为该领域的未来研究提供一些指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-time scale control and optimization via averaging and singular perturbation theory: From ODEs to hybrid dynamical systems

Multi-time scale techniques based on singular perturbations and averaging theory are among the most powerful tools developed for the synthesis and analysis of feedback control algorithms. This paper introduces some of the recent advances in singular perturbation theory and averaging theory for continuous-time dynamical systems modeled as ordinary differential equations (ODEs), as well as for hybrid dynamical systems that combine continuous-time dynamics and discrete-time dynamics. Novel multi-time scale analytical tools based on higher-order averaging and singular perturbation theory are also discussed and illustrated via different examples. In the context of hybrid dynamical systems, a class of sufficient Lyapunov-based conditions for global stability results are also presented. The analytical tools are illustrated through various new architectures and algorithms within the context of adaptive and extremum-seeking systems. These tools are suitable for the study of model-free optimization and stabilization problems that require the synergistic use of continuous-time and discrete-time feedback. The paper aims to acquaint the reader with a range of modern tools for studying multi-time scale phenomena in optimization and control systems, providing some guidelines for future research in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Reviews in Control
Annual Reviews in Control 工程技术-自动化与控制系统
CiteScore
19.00
自引率
2.10%
发文量
53
审稿时长
36 days
期刊介绍: The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles: Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected. Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and Tutorial research Article: Fundamental guides for future studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信