Yuting Bai , Bin Yan , Chenguang Zhou , Tingli Su , Xuebo Jin
{"title":"State of art on state estimation: Kalman filter driven by machine learning","authors":"Yuting Bai , Bin Yan , Chenguang Zhou , Tingli Su , Xuebo Jin","doi":"10.1016/j.arcontrol.2023.100909","DOIUrl":null,"url":null,"abstract":"<div><p>The Kalman filter<span> (KF) is a popular state estimation technique that is utilized in a variety of applications, including positioning and navigation, sensor networks, battery management, etc. This study presents a comprehensive review of the Kalman filter and its various enhanced models, with combining the Kalman filter with neural network methodologies. First, we provide a brief overview of the classical Kalman filter and its variants, including the extended Kalman filter<span> (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc. It is pointed out that the traditional Kalman filter faces two main problems: system model and noise model parameter identification. To overcome these obstacles, researchers have developed novel solutions by integrating machine learning techniques with the Kalman filter. Secondly, this paper classifies the related models into two categories: both the internal cross-combination of the Kalman filter and neural network and their external combinations. Two different hybrid models and typical structures show that the hybrid model performs more accurately and robustly overall. Finally, the characteristic of the two hybrid models is summarized so that readers can understand them more intuitively.</span></span></p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"56 ","pages":"Article 100909"},"PeriodicalIF":7.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578823000731","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The Kalman filter (KF) is a popular state estimation technique that is utilized in a variety of applications, including positioning and navigation, sensor networks, battery management, etc. This study presents a comprehensive review of the Kalman filter and its various enhanced models, with combining the Kalman filter with neural network methodologies. First, we provide a brief overview of the classical Kalman filter and its variants, including the extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc. It is pointed out that the traditional Kalman filter faces two main problems: system model and noise model parameter identification. To overcome these obstacles, researchers have developed novel solutions by integrating machine learning techniques with the Kalman filter. Secondly, this paper classifies the related models into two categories: both the internal cross-combination of the Kalman filter and neural network and their external combinations. Two different hybrid models and typical structures show that the hybrid model performs more accurately and robustly overall. Finally, the characteristic of the two hybrid models is summarized so that readers can understand them more intuitively.
期刊介绍:
The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles:
Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected.
Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and
Tutorial research Article: Fundamental guides for future studies.