Atmospheric Science Letters最新文献

筛选
英文 中文
An improved estimate of daily precipitation from the ERA5 reanalysis ERA5再分析对日降水量的改进估计
IF 3 4区 地球科学
Atmospheric Science Letters Pub Date : 2023-12-04 DOI: 10.1002/asl.1200
David A. Lavers, Hans Hersbach, Mark J. Rodwell, Adrian Simmons
{"title":"An improved estimate of daily precipitation from the ERA5 reanalysis","authors":"David A. Lavers,&nbsp;Hans Hersbach,&nbsp;Mark J. Rodwell,&nbsp;Adrian Simmons","doi":"10.1002/asl.1200","DOIUrl":"10.1002/asl.1200","url":null,"abstract":"<p>Precipitation is an essential climate variable and a fundamental part of the global water cycle. Given its importance to society, precipitation is often assessed in climate monitoring activities, such as in those led by the Copernicus Climate Change Service (C3S). To undertake these activities, C3S predominantly uses ERA5 reanalysis precipitation. Research has shown that short-range forecasts for precipitation made from this reanalysis can provide valuable estimates of the actual (observed) precipitation in extratropical regions but can be less useful in the tropics. While some of these limitations will be reduced with future reanalyses because of the latest advancements, there is potentially a more immediate way to improve the precipitation estimate. This is to use the precipitation modelled in the Four-Dimensional Variational (4D-Var) data assimilation window of the reanalysis, and it is the aim of this study to evaluate this approach. Using observed 24-h precipitation accumulations at 5637 stations from 2001 to 2020, results show that smaller root-mean-square errors (RMSEs) and mean absolute errors are generally found by using the ERA5 4D-Var precipitation. For example, for all available days from 2001 to 2020, 87.5% of stations have smaller RMSEs. These improvements are driven by reduced random errors in the 4D-Var precipitation because it is better constrained by observations, which are themselves sensitive to or influence precipitation. However, there are regions (e.g., Europe) where larger biases occur, and via the decomposition of the Stable Equitable Error in Probability Space score, this is shown to be because the 4D-Var precipitation has a wetter bias on ‘dry’ days than the standard ERA5 short-range forecasts. The findings also highlight that the 4D-Var precipitation does improve the discrimination of ‘heavy’ observed events. In conclusion, an improved ERA5 precipitation estimate is largely obtainable, and these results could prove useful for C3S activities and for future reanalyses, including ERA6.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"25 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1200","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A contrastive analysis on the causes of two regional snowstorm processes influenced by the southern branch trough in Hunan in early 2022 2022年初湖南南支槽影响下两次区域性暴雪过程成因对比分析
IF 3 4区 地球科学
Atmospheric Science Letters Pub Date : 2023-12-01 DOI: 10.1002/asl.1198
Yan Hu, Long Chen, Qingxia Wang, Enrong Zhao, Chengzhi Ye, Huanqian Liu
{"title":"A contrastive analysis on the causes of two regional snowstorm processes influenced by the southern branch trough in Hunan in early 2022","authors":"Yan Hu,&nbsp;Long Chen,&nbsp;Qingxia Wang,&nbsp;Enrong Zhao,&nbsp;Chengzhi Ye,&nbsp;Huanqian Liu","doi":"10.1002/asl.1198","DOIUrl":"10.1002/asl.1198","url":null,"abstract":"<p>In early 2022, there were four low-temperature weather processes with rain and snow in Hunan Province, China. Two processes occurred on January 28–29 (referred to as the “0128” process) and February 6–7 (referred to as the “0206” process), and they have overlapping areas of heavy snowfall and high intensity of short-term snowfall. Multi-source observation data and the National Centers for Environmental Prediction (NCEP) reanalysis data are used to analyze the characteristics of circulation background and mesoscale. In addition, the causes of heavy snowfall processes under the influence of the southern branch trough are discussed based on the dual-polarization radar products at Changsha station. The results show that two processes are characterized by the rapid phase transformation of rain and snow, concentrated snowfall periods, and heavy snowfall at night. The short-term snowfall intensity of the “0206” process is greater than that of the “0128” process. The high-latitude blocking high of the “0206” process is stronger than that of the “0128” process, and the water vapor transport of the southerly jet in low levels in the “0206” process is also stronger. The organized development of cold cloud clusters from the meso-β scale to the meso-α scale indicates that the snowfall intensifies, and the maximum blackbody temperature gradient corresponds well to the center of heavy snowfall. The propagation that is similar to the train effect is an important reason for the heavy snowfall process. The vertical variation of the Z<sub>H</sub> and the bright band of dual-polarization parameters can determine the phase transformation between rain and snow. When the Z<sub>H</sub> and Z<sub>DR</sub> bright bands are 1–3 km away from the ground, the phase state is rain if the Z<sub>H</sub> near the ground is greater than 0 dBZ and the CC is close to 1; the phase state is the rain-snow mixed phase if the CC is less than 0.95. When the bottom of the Z<sub>H</sub> bright band decreases, the CC/Z<sub>DR</sub> bright band disappears, the near-surface CC is greater than 0.99 and the Z<sub>DR</sub> is less than 1 dB, the rain turns to snow. Compared with the “0128” process, the characteristics of the bright ring during the rainfall period of the “0206” process are more obvious, the precipitation intensity judged from the larger Z<sub>H</sub> and K<sub>DP</sub> is larger, and the phase transformation is faster due to more significant cooling effect caused by precipitation.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"25 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1198","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the limitations of deep learning for statistical downscaling of climate change projections: The transferability and the extrapolation issues 关于深度学习对气候变化预测的统计降尺度的局限性:可转移性和外推问题
IF 3 4区 地球科学
Atmospheric Science Letters Pub Date : 2023-11-28 DOI: 10.1002/asl.1195
Alfonso Hernanz, Carlos Correa, Juan-Carlos Sánchez-Perrino, Ignacio Prieto-Rico, Esteban Rodríguez-Guisado, Marta Domínguez, Ernesto Rodríguez-Camino
{"title":"On the limitations of deep learning for statistical downscaling of climate change projections: The transferability and the extrapolation issues","authors":"Alfonso Hernanz,&nbsp;Carlos Correa,&nbsp;Juan-Carlos Sánchez-Perrino,&nbsp;Ignacio Prieto-Rico,&nbsp;Esteban Rodríguez-Guisado,&nbsp;Marta Domínguez,&nbsp;Ernesto Rodríguez-Camino","doi":"10.1002/asl.1195","DOIUrl":"10.1002/asl.1195","url":null,"abstract":"<p>Convolutional neural networks (CNNs) have become one of the state-of-the-art techniques for downscaling climate projections. They are being applied under Perfect-Prognosis (trained in a historical period with observations) and hybrid approaches (as Regional Climate Models (RCMs) emulators), with satisfactory results. Nevertheless, two important aspects have not been, to our knowledge, properly assessed yet: (1) their performance as emulators for other Earth System Models (ESMs) different to the one used for training, and (2) their performance under extrapolation, that is, when applied outside of their calibration range. In this study, we use UNET, a popular CNN, to assess these two aspects through two pseudo-reality experiments, and we compare it with simpler emulators: an interpolation and a linear regression. The RCA4 regional model, with 0.11° resolution over a complex domain centered in the Pyrenees, and driven by the CNRM-CM5 global model is used to train the emulators. Two frameworks are followed for the training: predictors are taken (1) from the upscaled RCM and (2) from the ESM. In both frameworks, the performance of the UNET when applied for other ESMs different to the one used for training is considerably worse, indicating poor generalization. For the linear method a similar deterioration is seen, so this limitation does not seem method specific but inherent to the task. For the second experiment, the emulators are trained in present and evaluated in future, under extrapolation. While averaged aspects such as the mean values are well simulated in future, significant biases (up to 5°C) appear when assessing warm extremes. These biases are larger by UNET than those produced by the linear method. This limitation suggests that, for variables such as temperature, with a marked signal of change and a strong linear relationship with predictors, simple linear methods might be more appropriate than the sophisticated deep learning techniques.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"25 2","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1195","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistics of sudden stratospheric warmings using a large model ensemble 使用大型模式集合的平流层突然变暖的统计
IF 3 4区 地球科学
Atmospheric Science Letters Pub Date : 2023-11-28 DOI: 10.1002/asl.1202
Sarah Ineson, Nick J. Dunstone, Adam A. Scaife, Martin B. Andrews, Julia F. Lockwood, Bo Pang
{"title":"Statistics of sudden stratospheric warmings using a large model ensemble","authors":"Sarah Ineson,&nbsp;Nick J. Dunstone,&nbsp;Adam A. Scaife,&nbsp;Martin B. Andrews,&nbsp;Julia F. Lockwood,&nbsp;Bo Pang","doi":"10.1002/asl.1202","DOIUrl":"10.1002/asl.1202","url":null,"abstract":"<p>Using a large ensemble of initialised retrospective forecasts (hindcasts) from a seasonal prediction system, we explore various statistics relating to sudden stratospheric warmings (SSWs). Observations show that SSWs occur at a similar frequency during both El Niño and La Niña northern hemisphere winters. This is contrary to expectation, as the stronger stratospheric polar vortex associated with La Niña years might be expected to result in fewer of these extreme breakdowns. Here we show that this similar frequency may have occurred by chance due to the limited sample of years in the observational record. We also show that in these hindcasts, winters with two SSWs, a rare event in the observational record, on average have an increased surface impact. Multiple SSW events occur at a lower rate than expected if events were independent but somewhat surprisingly, our analysis also indicates a risk, albeit small, of winters with three or more SSWs, as yet an unseen event.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"25 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1202","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial and attribute filtering as a complementary measure in the statistical prediction of tropical cyclone rainfall 空间滤波和属性滤波在热带气旋降水统计预报中的补充作用
IF 3 4区 地球科学
Atmospheric Science Letters Pub Date : 2023-11-20 DOI: 10.1002/asl.1197
Jose Angelo Hokson, Shinjiro Kanae
{"title":"Spatial and attribute filtering as a complementary measure in the statistical prediction of tropical cyclone rainfall","authors":"Jose Angelo Hokson,&nbsp;Shinjiro Kanae","doi":"10.1002/asl.1197","DOIUrl":"10.1002/asl.1197","url":null,"abstract":"<p>The increasing rate of tropical cyclone (TC) rainfall has put populations in the Western North Pacific Region at greater risk of TC rainfall-induced disasters. Statistical methodologies have shown potential in complementing existing prediction approaches. With TC track prediction accuracy significantly improving, statistical predictions have turned to TC tracks as a measure of similarity between TCs. Several studies have utilized Fuzzy C Means (FCM) to this end. However, FCM alone does not provide guidance on how many similar TCs should be used for predicting rainfall through ensemble averaging. While various number of ensemble members have been used to check the average error, such an approach yields only one number, which may not always be the most appropriate. In this study, we proposed a spatial and attribute filter to complement FCM identification of similar TCs. This filter excludes similar TCs with central pressure differences greater than 5% at strategic TC locations near land. The use of the filter yielded better rainfall prediction values than using FCM alone, as demonstrated in this study and validated against previous research findings. Our proposed model offers a reliable means of predicting TC rainfall when used in conjunction with accurately predicted TC tracks, representing a valuable complementary approach to existing prediction methods.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"25 2","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1197","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Summary of atmospheric characteristics of days with inland penetrating sea breezes from 2015 to 2021 2015 年至 2021 年内陆穿透性海风日的大气特征摘要
IF 3 4区 地球科学
Atmospheric Science Letters Pub Date : 2023-11-13 DOI: 10.1002/asl.1192
Stephen Noble, Brian Viner, Joseph Wermter
{"title":"Summary of atmospheric characteristics of days with inland penetrating sea breezes from 2015 to 2021","authors":"Stephen Noble,&nbsp;Brian Viner,&nbsp;Joseph Wermter","doi":"10.1002/asl.1192","DOIUrl":"10.1002/asl.1192","url":null,"abstract":"<p>Sea breezes penetrate inland more than 100 km. Using 7 years of meteorological observations, we have identified 470 cases of deep inland (&gt;100 km) penetrating sea breezes at the Savannah River Site between March and October (27% of days) of 2015–2021. We compared measurements of temperature, dewpoint temperature, incoming solar radiation, cloud fraction, and lightning on days of sea breeze initiation, the day after the sea breeze passage, and all other nonsea breeze (NSB) days for these 8 months over the 7 years. Days of sea breeze initiation were found to have lower cloud fraction, higher temperature, and greater incoming solar radiation compared with NSB days. Variations occurred by time of year as days after the sea breeze passage were found to have higher dewpoint temperature than NSB days in the spring. Lightning density measurements indicated that residual sea breeze conditions could drive earlier initiation of deep convection on days following the sea breeze than normal non sea breeze days. This data set provides a 7-year record of sea breezes which can be leveraged for future studies.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"25 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1192","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136351944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wet deposition of polycyclic aromatic hydrocarbons in a remote area of Central South China from 2014 to 2017 2014年至2017年中南偏远地区多环芳烃湿沉降情况
IF 3 4区 地球科学
Atmospheric Science Letters Pub Date : 2023-11-08 DOI: 10.1002/asl.1201
Yanxia Li, Xiaoyong Duan
{"title":"Wet deposition of polycyclic aromatic hydrocarbons in a remote area of Central South China from 2014 to 2017","authors":"Yanxia Li,&nbsp;Xiaoyong Duan","doi":"10.1002/asl.1201","DOIUrl":"10.1002/asl.1201","url":null,"abstract":"<p>In recent years, there has been a notable increase in the consumption of fossil energy, leading to a significant rise in environmental pollution, particularly in China due to its rapid development. This has resulted in the frequent occurrence of large-scale fog and haze weather, highlighting the urgent need for environmental protection measures. To gain insights into the atmospheric conditions in China, an analysis was conducted on the wet deposition of polycyclic aromatic hydrocarbons (PAHs) in a remote region of Central South China from 2014 to 2017. The study revealed that the average concentrations and peak values of Ʃ<sub>16</sub>PAHs in 2014 and 2015 were considerably higher than those observed in 2016 and 2017. Furthermore, it was found that five-ring PAH species were the predominant components during 2014 and 2015, indicating a shift in the main sources of PAHs. The peaks of Ʃ<sub>16</sub>PAHs were predominantly detected in samples collected during light rain in the winter, specifically on days without heavy rainfall. This can be attributed to the absence of heavy rain, which would otherwise reduce the concentration of air pollutants. Consequently, contaminants accumulated in the air are easily enriched in rainwater. The concentrations of Ʃ<sub>15</sub>Alkyl-PAHs also exhibited a significant correlation with the number of rainfall days. Notably, a much higher annual average concentration of Ʃ<sub>15</sub>Alkyl-PAHs was observed in 2017, which experienced fewer rainfall days. Coal combustion, petroleum sources, and vehicular emissions accounted for 58%, 12%, and 30% of the PAHs in the air, respectively. Despite improvements in air quality in China since 2016, it is crucial to address the elevated concentrations of PAHs in the atmosphere, particularly under adverse meteorological conditions characterized by reduced rainfall.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"25 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135392752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stratification of the vertical spread-skill relation by radiosonde drift in a convective-scale ensemble 对流尺度集合中辐射计漂移对垂直传播-技能关系的分层作用
IF 3 4区 地球科学
Atmospheric Science Letters Pub Date : 2023-11-03 DOI: 10.1002/asl.1194
David L. A. Flack
{"title":"Stratification of the vertical spread-skill relation by radiosonde drift in a convective-scale ensemble","authors":"David L. A. Flack","doi":"10.1002/asl.1194","DOIUrl":"10.1002/asl.1194","url":null,"abstract":"<p>Ensemble forecasting systems provide useful insight into the uncertainty in the prediction of the atmosphere. However, most analysis considers ensembles in latitude, longitude, and time. Here, the vertical aspects of the spread-skill relation are considered in a convective-scale ensemble via comparisons with radiosonde ascents. The specific focus is on the impact of stratifying the spread-skill relation by radiosonde drift. The drift acts as a proxy for the mobility of the atmosphere. The overall spread-skill relation shows the temperature has a better relation than the dewpoint. However, the total variance comparisons between model and observations indicates that the dewpoint is underspread throughout the atmosphere, whilst the temperature is overspread through the lower atmosphere and underspread aloft. This suggests that the model bias is influencing the spread-skill relation. Stratifying these results by the radiosonde drift indicates that the spread-skill relation, and model bias, for both temperature and dewpoint degrades with increased mobility. For the most mobile situations, the ensemble is underspread throughout the atmosphere. These results have implications for ensemble design in terms of the role and influence of the driving ensemble in regional systems as more mobile situations will have a stronger dependence on the lateral boundary conditions. Longer term it may also imply that different strategies are required depending on the mobility of the synoptic conditions. Therefore, it argues for more consideration of “on-demand” ensemble forecasting systems to allow a fairer representation of the uncertainty in different situations.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"25 2","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1194","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135868103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification and mechanism of spring and summer floods in northern Xinjiang from 2006 to 2011 2006-2011 年新疆北部春夏季洪涝灾害的分类与机理
IF 3 4区 地球科学
Atmospheric Science Letters Pub Date : 2023-11-02 DOI: 10.1002/asl.1193
Ping Chen, Weiyi Mao, Junqiang Yao, Jing Chen, Liyun Ma
{"title":"Classification and mechanism of spring and summer floods in northern Xinjiang from 2006 to 2011","authors":"Ping Chen,&nbsp;Weiyi Mao,&nbsp;Junqiang Yao,&nbsp;Jing Chen,&nbsp;Liyun Ma","doi":"10.1002/asl.1193","DOIUrl":"10.1002/asl.1193","url":null,"abstract":"<p>The significant socioeconomic impact of extreme flooding provides an incentive to improve our understanding of flood drivers. In this study, floods that occurred in northern Xinjiang from 2006 to 2011 were divided into three categories: rainstorm-type, warming-type, and mixed-type. These three types of floods primarily occurred from April to July, with most occurring in May and June. Through analysis of the atmospheric circulation evolution process of the three types of floods, it can be concluded that when a rainstorm-type flood occurs, northern Xinjiang is affected by an anomalous cyclone that forms in front of the strengthened trough over northern Europe. Anomalous cyclones provide favorable conditions for precipitation, which is conducive to rainstorm-type floods. As for the warming-type flood event, northern Xinjiang is affected by an anomalous anticyclone formed by the eastward movement of the blocking system in the middle of the Eurasian continent. Before the third type of mixed flood event occurred, northern Xinjiang was affected by an anomalous cyclone formed by energy propagation along the northwesterly wind belt. In addition, the energy propagating along the westerly wind belt along the southern road is conducive to the formation of a high-pressure ridge in southern Xinjiang. In addition, the analysis of temperature conditions indicates that the daily maximum temperature showed a warming trend from 5 to 1 day before the warming-type and mixed-type flood event occurred. These results provide valuable insights for flood risk management by identifying atmospheric circulation patterns and temperature conditions associated with floods in northern Xinjiang.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"25 2","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1193","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135875741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of the water-vapor sources in rainstorm processes in Tianjin city based on the trajectory method 基于轨迹法的天津市暴雨过程水汽源分析
IF 3 4区 地球科学
Atmospheric Science Letters Pub Date : 2023-10-19 DOI: 10.1002/asl.1196
Kaifang Shi, Qi Lang, Yuefei Huang, Jie Zhao, Haozhi Wang, Guoxin Chen, Qian Zhang, Hang Yin, Yang Su, Peng Wang
{"title":"Analysis of the water-vapor sources in rainstorm processes in Tianjin city based on the trajectory method","authors":"Kaifang Shi,&nbsp;Qi Lang,&nbsp;Yuefei Huang,&nbsp;Jie Zhao,&nbsp;Haozhi Wang,&nbsp;Guoxin Chen,&nbsp;Qian Zhang,&nbsp;Hang Yin,&nbsp;Yang Su,&nbsp;Peng Wang","doi":"10.1002/asl.1196","DOIUrl":"10.1002/asl.1196","url":null,"abstract":"<p>Tianjin, one of the four municipalities in China, is the eastern gate of the capital city of Beijing and is of great socioeconomic importance. When rainstorms attack Tianjin, urban flooding often occurs due to the dense river network, well-developed water system and flat terrain. In this study, the source analysis of water vapor in rainstorm processes in Tianjin during 2012–2020 is conducted based on the moisture source attribution method, and the PyTrajector and HYSPLIT softwares. Then, the evolution characteristics of rainstorms in Tianjin are investigated. The results show that the rainstorm water-vapor sources in Tianjin city can be roughly divided into four directions. The west and southwest directions are the main source, which contribute about 89% of the water vapor to the rainstorms. For heavy rainstorm, the water vapor from the southwest direction contributes about 60%, which is larger than that of rainstorm. The southwest direction is the main water vapor source of heavy rainstorm in Tianjin and has the main effect on the water vapor fluctuations during heavy rainstorm. For the more hazardous extraordinary rainstorm, the water vapor from the southwest direction occupies an even larger proportion (74.3%). The annual total rainstorm precipitation in Tianjin city in 2012 was more than that in common years, and this is mainly due to the anomalous increase of water vapor from the southwest direction. This result further indicates that the annual total rainstorm precipitation in Tianjin is mainly influenced by the water vapor from the southwest direction. This study reveals that the majority of rainstorm in Tianjin originates from the western and southwestern directions, but significant heavy rainstorm events in Tianjin are particularly influenced by moisture from the southwestern direction. This research holds crucial implications not only for meteorological and water resource management in Tianjin but also provides valuable insights for global urban flood risk studies.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"25 2","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1196","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135666770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信