针对西太平洋热带气旋的 Aeroclipper 观测的潜在影响

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Miki Hattori, Hugo Bellenger, Jean-Philippe Duvel, Takeshi Enomoto
{"title":"针对西太平洋热带气旋的 Aeroclipper 观测的潜在影响","authors":"Miki Hattori,&nbsp;Hugo Bellenger,&nbsp;Jean-Philippe Duvel,&nbsp;Takeshi Enomoto","doi":"10.1002/asl.1234","DOIUrl":null,"url":null,"abstract":"<p>The Aeroclipper is a new balloon device that can be attracted and captured by tropical cyclones (TC) and perform continuous in situ measurements at the air–sea interfaces. To estimate the potential effect of Aeroclipper observations on the analysis of TCs, virtual Aeroclipper observations targeting TC Haima (October 2016) were synthesized using an idealized surface pressure distribution and best track data and were assimilated using an ensemble data assimilation system. Results show that the assimilation of Aeroclipper measurements may provide a more accurate representation of the TC pressure, wind, and temperature in analyses. This also leads to improved precipitation around the Philippines. The ensemble spread shows that the Aeroclipper measurement assimilation has an impact on the analyses that extends into the tropics from the early stages of TC development. These impact signals propagate westward with easterly waves and eastward with large-scale convective disturbances. Although the underlying mechanisms need to be further examined and tested using real Aeroclipper measurements, the present study shows that these balloons could provide valuable observations to improve the precision of analyses in presence of a TC. This is a first step toward a study of the impact of the Aeroclipper measurement on TC forecast.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1234","citationCount":"0","resultStr":"{\"title\":\"Potential impact of Aeroclipper observations targeting tropical cyclone in the Western Pacific\",\"authors\":\"Miki Hattori,&nbsp;Hugo Bellenger,&nbsp;Jean-Philippe Duvel,&nbsp;Takeshi Enomoto\",\"doi\":\"10.1002/asl.1234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Aeroclipper is a new balloon device that can be attracted and captured by tropical cyclones (TC) and perform continuous in situ measurements at the air–sea interfaces. To estimate the potential effect of Aeroclipper observations on the analysis of TCs, virtual Aeroclipper observations targeting TC Haima (October 2016) were synthesized using an idealized surface pressure distribution and best track data and were assimilated using an ensemble data assimilation system. Results show that the assimilation of Aeroclipper measurements may provide a more accurate representation of the TC pressure, wind, and temperature in analyses. This also leads to improved precipitation around the Philippines. The ensemble spread shows that the Aeroclipper measurement assimilation has an impact on the analyses that extends into the tropics from the early stages of TC development. These impact signals propagate westward with easterly waves and eastward with large-scale convective disturbances. Although the underlying mechanisms need to be further examined and tested using real Aeroclipper measurements, the present study shows that these balloons could provide valuable observations to improve the precision of analyses in presence of a TC. This is a first step toward a study of the impact of the Aeroclipper measurement on TC forecast.</p>\",\"PeriodicalId\":50734,\"journal\":{\"name\":\"Atmospheric Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1234\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asl.1234\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1234","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

Aeroclipper是一种新型气球装置,可被热带气旋(TC)吸引和捕获,并在海气界面进行连续的现场测量。为了估计Aeroclipper观测数据对TC分析的潜在影响,利用理想化的表面气压分布和最佳路径数据合成了针对TC "海马"(2016年10月)的虚拟Aeroclipper观测数据,并利用集合数据同化系统进行了同化。结果表明,Aeroclipper 测量数据的同化可在分析中更准确地呈现热带气旋的压力、风和温度。这也改善了菲律宾周围的降水情况。集合传播显示,Aeroclipper 测量同化对分析的影响从热带气旋发展的早期阶段就延伸到了热带地区。这些影响信号随着东风波向西传播,随着大尺度对流扰动向东传播。尽管其基本机制还需要使用真实的 Aeroclipper 测量数据进行进一步研究和测试,但本研究表明,这些气球可以提供宝贵的观测数据,以提高出现 TC 时的分析精度。这是研究 Aeroclipper 测量对 TC 预报影响的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Potential impact of Aeroclipper observations targeting tropical cyclone in the Western Pacific

Potential impact of Aeroclipper observations targeting tropical cyclone in the Western Pacific

The Aeroclipper is a new balloon device that can be attracted and captured by tropical cyclones (TC) and perform continuous in situ measurements at the air–sea interfaces. To estimate the potential effect of Aeroclipper observations on the analysis of TCs, virtual Aeroclipper observations targeting TC Haima (October 2016) were synthesized using an idealized surface pressure distribution and best track data and were assimilated using an ensemble data assimilation system. Results show that the assimilation of Aeroclipper measurements may provide a more accurate representation of the TC pressure, wind, and temperature in analyses. This also leads to improved precipitation around the Philippines. The ensemble spread shows that the Aeroclipper measurement assimilation has an impact on the analyses that extends into the tropics from the early stages of TC development. These impact signals propagate westward with easterly waves and eastward with large-scale convective disturbances. Although the underlying mechanisms need to be further examined and tested using real Aeroclipper measurements, the present study shows that these balloons could provide valuable observations to improve the precision of analyses in presence of a TC. This is a first step toward a study of the impact of the Aeroclipper measurement on TC forecast.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信