M F Koloski, S Hulyalkar, S A Barnes, J Mishra, D S Ramanathan
{"title":"Cortico-striatal beta oscillations as a reward-related signal.","authors":"M F Koloski, S Hulyalkar, S A Barnes, J Mishra, D S Ramanathan","doi":"10.3758/s13415-024-01208-6","DOIUrl":"10.3758/s13415-024-01208-6","url":null,"abstract":"<p><p>The value associated with reward is sensitive to external factors, such as the time between the choice and reward delivery as classically manipulated in temporal discounting tasks. Subjective preference for two reward options is dependent on objective variables of reward magnitude and reward delay. Single neuron correlates of reward value have been observed in regions, including ventral striatum, orbital, and medial prefrontal cortex. Brain imaging studies show cortico-striatal-limbic network activity related to subjective preferences. To explore how oscillatory dynamics represent reward processing across brain regions, we measured local field potentials of rats performing a temporal discounting task. Our goal was to use a data-driven approach to identify an electrophysiological marker that correlates with reward preference. We found that reward-locked oscillations at beta frequencies signaled the magnitude of reward and decayed with longer temporal delays. Electrodes in orbitofrontal/medial prefrontal cortex, anterior insula, ventral striatum, and amygdala individually increased power and were functionally connected at beta frequencies during reward outcome. Beta power during reward outcome correlated with subjective value as defined by a computational model fit to the discounting behavior. These data suggest that cortico-striatal beta oscillations are a reward signal correlated, which may represent subjective value and hold potential to serve as a biomarker and potential therapeutic target.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":"839-859"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcranial Direct Current Stimulation (tDCS) over the left dorsolateral prefrontal cortex reduced attentional bias toward natural emotional sounds.","authors":"Linzi Wang, Tongtong Zhu, Aijun Wang, Yanmei Wang","doi":"10.3758/s13415-024-01202-y","DOIUrl":"10.3758/s13415-024-01202-y","url":null,"abstract":"<p><p>Previous research has indicated that the left dorsolateral prefrontal cortex (DLPFC) exerts an influence on attentional bias toward visual emotional information. However, it remains unclear whether the left DLPFC also play an important role in attentional bias toward natural emotional sounds. The current research employed the emotional spatial cueing paradigm, incorporating natural emotional sounds of considerable ecological validity as auditory cues. Additionally, high-definition transcranial direct current stimulation (HD-tDCS) was utilized to examine the impact of left dorsolateral prefrontal cortex (DLPFC) on attentional bias and its subcomponents, namely attentional engagement and attentional disengagement. The results showed that (1) compared to sham condition, anodal HD-tDCS over the left DLPFC reduced the attentional bias toward positive and negative sounds; (2) anodal HD-tDCS over the left DLPFC reduced the attentional engagement toward positive and negative sounds, whereas it did not affect attentional disengagement away from natural emotional sounds. Taken together, the present study has shown that left DLPFC, which was closely related with the top-down attention regulatory function, plays an important role in auditory emotional attentional bias.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":"881-893"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The impact of social comparison on self-deception: An event-related potentials study.","authors":"Ying Yang, Bowei Zhong, Wenjie Zhang, Wei Fan","doi":"10.3758/s13415-024-01203-x","DOIUrl":"10.3758/s13415-024-01203-x","url":null,"abstract":"<p><p>Self-deception refers to an individual holding inflated beliefs about their abilities, and it plays a crucial role in human behavior and decision-making. The present study employed event-related potentials (ERPs) technique to explore the neural responses to the impacts of social comparison direction and comparison gap on self-deceptive behavior. They were instructed to predict their performance in the forward-looking paradigm. Behavioral responses and neural reactions during the decision-making process were documented. The behavioral results indicated that, in contrast to the downward comparison condition, participants engaged in upward comparison exhibited more occurrences of self-deception. However, within the context of upward comparison, participants demonstrated a higher frequency of self-deception in the large gap condition compared with the small gap condition. The ERP results showed that induced self-deception under conditions with a large comparative gap between participants and their paired counterparts stimulated larger P300 and smaller N400 amplitude than under conditions with a small gap. However, when participants were in the upward comparison situation, the late positive potential (LPP) amplitude induced by self-deception behavior in the condition of a large comparison gap between participants and paired opponents was larger than that in the condition of a small comparison gap. These results indicated that individuals in the large gap group feel strong unfairness and negative emotions. More importantly, the self-deception induced by the large gap group in the upward comparison situation used fewer cognitive resources than the small gap condition, whereas the individuals in the downward comparison situation did not show the difference in cognitive resources.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":"931-947"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sven Paßmann, Sandrine Baselgia, Florian H Kasten, Christoph S Herrmann, Björn Rasch
{"title":"Differential online and offline effects of theta-tACS on memory encoding and retrieval.","authors":"Sven Paßmann, Sandrine Baselgia, Florian H Kasten, Christoph S Herrmann, Björn Rasch","doi":"10.3758/s13415-024-01204-w","DOIUrl":"10.3758/s13415-024-01204-w","url":null,"abstract":"<p><p>Theta oscillations support memory formation, but their exact contribution to the communication between prefrontal cortex (PFC) and the hippocampus is unknown. We tested the functional relevance of theta oscillations as a communication link between both areas for memory formation using transcranial alternating current stimulation (tACS). Healthy, young participants learned two lists of Dutch-German word pairs and retrieved them immediately and with a 30-min delay. In the encoding group (N = 30), tACS was applied during the encoding of list 1. List 2 was used to test stimulation aftereffects. In the retrieval group (N = 23), we stimulated during the delayed recall. In both groups, we applied tACS bilaterally at prefrontal and tempo-parietal sites, using either individualized theta frequency or 15 Hz (as control), according to a within-subject design. Stimulation with theta-tACS did not alter overall learning performance. An exploratory analysis revealed that immediate recall improved when word-pairs were learned after theta-tACS (list 2). Applying theta-tACS during retrieval had detrimental effects on memory. No changes in the power of the respective frequency bands were observed. Our results do not support the notion that impacting the communication between PFC and the hippocampus during a task by bilateral tACS improves memory. However, we do find evidence that direct stimulation had a trend for negatively interfering effects during immediate and delayed recall. Hints for beneficial effects on memory only occurred with aftereffects of the stimulation. Future studies need to further examine the effects during and after stimulation on memory formation.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":"894-911"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A computational account of conflict processing during mental imagery.","authors":"Mengxiao Wang, Qi-Yang Nie","doi":"10.3758/s13415-024-01201-z","DOIUrl":"10.3758/s13415-024-01201-z","url":null,"abstract":"<p><p>Previous studies examining conflict processing within the context of a color-word Stroop task have focused on both stimulus and response conflicts. However, it has been unclear whether conflict can emerge independently of stimulus conflict. In this study, a novel arrow-gaze mental-rotation Stroop task was introduced to explore the interplay between conflict processing and mental rotation. A modelling approach was utilized to provide a process-level account of the findings. The results of our Stroop task indicate that conflict can emerge from mental rotation in the absence of stimulus conflict. The strength of this imagery conflict effect decreases and even reverses as mental rotation angles increase. Additionally, it was observed that participants responded more quickly and with greater accuracy to small rather than large face orientations. A comparison of three conflict diffusion models-the diffusion model for conflict tasks (DMC), the dual-stage two-phase model (DSTP), and the shrinking spotlight model (SSP)-yielded consistent support for the DSTP over the DMC and SSP in the majority of instances. The DSTP account of the experimental results revealed an increased nondecision time with increasing mental rotation, a reduction in interference from incompatible stimuli, and an improved drift rate in response selection phase, which suggests enhanced cognitive control. The findings from the model-based analysis provide evidence for a novel interaction between cognitive control and mental rotation.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":"816-838"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexis S Torres, Matthew K Robison, Samuel M McClure, Gene A Brewer
{"title":"The influence of transcranial direct current stimulation to the trigeminal nerve on attention and arousal.","authors":"Alexis S Torres, Matthew K Robison, Samuel M McClure, Gene A Brewer","doi":"10.3758/s13415-024-01205-9","DOIUrl":"10.3758/s13415-024-01205-9","url":null,"abstract":"<p><p>One mechanism by which transcranial direct current stimulation (tDCS) has been proposed to improve attention is by transcutaneous stimulation of cranial nerves, thereby activating the locus coeruleus (LC). Specifically, placement of the electrodes over the frontal bone and mastoid is thought to facilitate current flow across the face as a path of least resistance. The face is innervated by the trigeminal nerve, and the trigeminal nerve is interconnected with the LC. In this study, we tested whether stimulating the trigeminal nerve impacts indices of LC activity and performance on a sustained attention task. We replicated previous research that shows deterioration in task performance, increases in the rate of task-unrelated thoughts, and reduced pupil responses due to time on task irrespective of tDCS condition (sham, anodal, and cathodal stimulation). Importantly, tDCS did not influence pupil dynamics (pretrial or stimulus-evoked), self-reported attention state, nor task performance in active versus sham stimulation conditions. The findings reported here are consistent with theories about arousal centered on a hypothesized link between LC activity indexed by pupil size, task performance, and self-reported attention state but fail to support hypotheses that tDCS over the trigeminal nerve influences indices of LC function.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":"860-880"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Morningstar, K A Billetdeaux, W I Mattson, A C Gilbert, E E Nelson, K R Hoskinson
{"title":"Neural response to vocal emotional intensity in youth.","authors":"M Morningstar, K A Billetdeaux, W I Mattson, A C Gilbert, E E Nelson, K R Hoskinson","doi":"10.3758/s13415-024-01224-6","DOIUrl":"https://doi.org/10.3758/s13415-024-01224-6","url":null,"abstract":"<p><p>Previous research has identified regions of the brain that are sensitive to emotional intensity in faces, with some evidence for developmental differences in this pattern of response. However, comparable understanding of how the brain tracks linear variations in emotional prosody is limited-especially in youth samples. The current study used novel stimuli (morphing emotional prosody from neutral to anger/happiness in linear increments) to investigate whether neural response to vocal emotion was parametrically modulated by emotional intensity and whether there were age-related changes in this effect. Participants aged 8-21 years (n = 56, 52% female) completed a vocal emotion recognition task, in which they identified the intended emotion in morphed recordings of vocal prosody, while undergoing functional magnetic resonance imaging. Parametric analyses of whole-brain response to morphed stimuli found that activation in the bilateral superior temporal gyrus (STG) scaled to emotional intensity in angry (but not happy) voices. Multivariate region-of-interest analyses revealed the same pattern in the right amygdala. Sensitivity to emotional intensity did not vary by participants' age. These findings provide evidence for the linear parameterization of emotional intensity in angry vocal prosody within the bilateral STG and right amygdala. Although findings should be replicated, the current results also suggest that this pattern of neural sensitivity may not be subject to strong developmental influences.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of variation in phonological and semantic working memory capacities in sentence comprehension: neural evidence from healthy and brain-damaged individuals","authors":"Randi C. Martin, Qiuhai Yue, Rachel Zahn, Yu Lu","doi":"10.3758/s13415-024-01217-5","DOIUrl":"https://doi.org/10.3758/s13415-024-01217-5","url":null,"abstract":"<p>Research on the role of working memory (WM) in language processing has typically focused on WM for phonological information. However, considerable behavioral evidence supports the existence of a separate semantic WM system that plays a greater role in language processing. We review the neural evidence that supports the distinction between phonological and semantic WM capacities and discuss how individual differences in these capacities relate to sentence processing. In terms of neural substrates, findings from multivariate functional MRI for healthy participants and voxel-based lesion-symptom mapping for brain-damaged participants imply that the left supramarginal gyrus supports phonological WM, whereas the left inferior frontal gyrus (LIFG) and angular gyrus support semantic WM. In sentence comprehension, individual variation in semantic but not phonological WM related to performance in resolving semantic information and the LIFG region implicated in semantic WM showed fMRI activation during the resolution of semantic interference. Moreover, variation for brain-damaged participants in the integrity of a fiber tract supporting semantic WM had a greater relation to the processing of complex sentences than did the integrity of fiber tracts supporting phonological WM. Overall, the neural findings provide converging evidence regarding the distinction of these two capacities and the greater contribution of individual differences in semantic than phonological WM capacity to sentence processing.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":"41 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Colautti, Paola Iannello, Maria Caterina Silveri, Anna Rita Giovagnoli, Antonio Emanuele Elia, Fulvio Pepe, Eugenio Magni, Alessandro Antonietti
{"title":"Deepening the decisional processes under value-based conditions in patients affected by Parkinson’s disease: A comparative study","authors":"Laura Colautti, Paola Iannello, Maria Caterina Silveri, Anna Rita Giovagnoli, Antonio Emanuele Elia, Fulvio Pepe, Eugenio Magni, Alessandro Antonietti","doi":"10.3758/s13415-024-01211-x","DOIUrl":"https://doi.org/10.3758/s13415-024-01211-x","url":null,"abstract":"<p>Patients affected by Parkinson’s disease (PD) display a tendency toward making risky choices in value-based conditions. Possible causes may encompass the pathophysiologic characteristics of PD that affect neural structures pivotal for decision making (DM) and the dopaminergic medications that may bias choices. Nevertheless, excluding patients with concurrent impulse control disorders, results are few and mixed. Conversely, other factors, such as individual differences (e.g., emotional state, impulsivity, consideration for future consequences) and cognitive functioning, in particular executive functions (EFs), are involved, even though few studies investigated their possible role. The present study investigated (1) the differences in value-based DM between 33 patients with PD without impulse control disorders and 33 matched healthy controls, and (2) the relationships among decisional performances, EFs, and individual differences in a group of 42 patients with PD who regularly undertake dopaminergic medications. All participants underwent an individual assessment to investigate value-based DM, cognitive abilities, and individual differences associated with DM. Nonparametric analyses showed the presence of riskier decisions in patients compared with healthy controls, depending on the characteristics of the decisional situation. Moreover, parameters of the decisional tasks involving the number of risky choices were significantly related to the posology of dopaminergic medications, EFs, and individual differences. Findings were discussed, highlighting possible clinical implications.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":"76 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michele Di Ponzio, Luca Battaglini, Marco Bertamini, Giulio Contemori
{"title":"Behavioural stochastic resonance across the lifespan","authors":"Michele Di Ponzio, Luca Battaglini, Marco Bertamini, Giulio Contemori","doi":"10.3758/s13415-024-01220-w","DOIUrl":"https://doi.org/10.3758/s13415-024-01220-w","url":null,"abstract":"<p>Stochastic resonance (SR) is the phenomenon wherein the introduction of a suitable level of noise enhances the detection of subthreshold signals in non linear systems. It manifests across various physical and biological systems, including the human brain. Psychophysical experiments have confirmed the behavioural impact of stochastic resonance on auditory, somatic, and visual perception. Aging renders the brain more susceptible to noise, possibly causing differences in the SR phenomenon between young and elderly individuals. This study investigates the impact of noise on motion detection accuracy throughout the lifespan, with 214 participants ranging in age from 18 to 82. Our objective was to determine the optimal noise level to induce an SR-like response in both young and old populations. Consistent with existing literature, our findings reveal a diminishing advantage with age, indicating that the efficacy of noise addition progressively diminishes. Additionally, as individuals age, peak performance is achieved with lower levels of noise. This study provides the first insight into how SR changes across the lifespan of healthy adults and establishes a foundation for understanding the pathological alterations in perceptual processes associated with aging.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":"25 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}