{"title":"Change and relationship between growing season metrics and net primary productivity in forestland and grassland in China","authors":"Linli Cui, Jun Shi, Fengjin Xiao","doi":"10.1186/s13021-023-00245-x","DOIUrl":"10.1186/s13021-023-00245-x","url":null,"abstract":"<div><h3>Background</h3><p>Vegetation phenology can characterize ecosystem functions and plays a key role in the dynamics of plant productivity. Here we investigated the changes in growing season metrics (start of growing season, SOS; end of growing season, EOS; length of growing season, LOS) and their relationships with net primary productivity (NPP) in forestland and grassland in China during 1981–2016.</p><h3>Results</h3><p>SOS advanced, EOS delayed, LOS prolonged and NPP increased significantly in 23.7%, 21.0%, 40.5% and 19.9% of the study areas, with an average rate of 3.9 days decade<sup>−1</sup>, 3.3 days·decade<sup>−1</sup>, 6.7 days·decade<sup>−1</sup> and 10.7 gC m<sup>−2</sup>·decade<sup>−1</sup>, respectively. The changes in growing season metrics were obvious in Northwest China (NWC) and North China (NC), but the least in Northeast China (NEC). NPP was negatively correlated with SOS and positively correlated with EOS and LOS in 22.0%, 16.3% and 22.8% of the study areas, respectively, and the correlation between NPP and growing season metrics was strong in NWC, NC and Southwest China (SWC), but weak in NEC and South China (SC).</p><h3>Conclusion</h3><p>The advanced SOS, delayed EOS and prolonged LOS all contribute to the increased NPP in forestland and grassland in China, especially in NWC, NC and SWC. This study also highlights the need to further study the response of NPP to growing season changes in different regions and under the influence of multiple factors.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10740267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138827496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Growing-season carbon budget of alpine meadow ecosystem in the Qinghai Lake Basin: a continued carbon sink through this century according to the Biome-BGC model","authors":"Meng-ya Zhang, Yu-jun Ma, Peng Chen, Fang-zhong Shi, Jun-qi Wei","doi":"10.1186/s13021-023-00244-y","DOIUrl":"10.1186/s13021-023-00244-y","url":null,"abstract":"<div><h3>Background</h3><p>The alpine meadow is one of the most important ecosystems in the Qinghai-Tibet Plateau (QTP), and critically sensitive to climate change and human activities. Thus, it is crucial to precisely reveal the current state and predict future trends in the carbon budget of the alpine meadow ecosystem. The objective of this study was to explore the applicability of the Biome-BGC model (BBGC) in the Qinghai Lake Basin (QLB), identify the key parameters affecting the variation of net ecosystem exchange (NEE), and further predict the future trends in carbon budget in the QLB.</p><h3>Results</h3><p>The alpine meadow mainly acted as carbon sink during the growing season. For the eco-physiological factors, the YEL (Yearday to end litterfall), YSNG (Yearday to start new growth), CLEC (Canopy light extinction coefficient), FRC:LC (New fine root C: new leaf C), SLA (Canopy average specific leaf area), C:N<sub>leaf</sub> (C:N of leaves), and FLNR (Fraction of leaf N in Rubisco) were confirmed to be the top seven parameters affecting carbon budget of the alpine meadow. For the meteorological factors, the sensitivity of NEE to precipitation was greater than that to vapor pressure deficit (VPD), and it was greater to radiation than to air temperature. Moreover, the combined effect of two different meteorological factors on NEE was higher than the individual effect of each one. In the future, warming and wetting would enhance the carbon sink capacity of the alpine meadow during the growing season, but extreme warming (over 3.84 ℃) would reduce NEE (about 2.9%) in the SSP5-8.5 scenario.</p><h3>Conclusion</h3><p>Overall, the alpine meadow ecosystem in the QLB generally performs as a carbon sink at present and in the future. It is of great significance for the achievement of the goal of carbon neutrality and the management of alpine ecosystems.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-023-00244-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138739670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The impact of land cover change on the carbon stock of moist afromontane forests in the Majang Forest Biosphere Reserve","authors":"Semegnew Tadese, Teshome Soromessa, Abreham Berta Aneseye, Getaneh Gebeyehu, Tomasz Noszczyk, Mengistie Kindu","doi":"10.1186/s13021-023-00243-z","DOIUrl":"10.1186/s13021-023-00243-z","url":null,"abstract":"<div><h3>Backgorund</h3><p>Forest plays an important role in the global carbon cycle by sequestering carbon dioxide and thereby mitigating climate change. In this study, an attempt was made to investigate the effects of land use/land cover (LULC) change (1989–2017) on carbon stock and its economic values in tropical moist Afromontane forests of the Majang Forest Biosphere Reserve (MFBR), south-west Ethiopia. Systematic sampling was conducted to collect biomass and soil data from 140 plots in MFBR. The soil data were collected from grassland and farmland. InVEST modelling was employed to investigate the spatial and temporal distribution of carbon stocks. Global Voluntary Market Price (GVMP) and Tropical Economics of Ecosystems and Biodiversity (TEEB) analysis was performed to estimate economic values (EV) of carbon stock dynamics. Correlation and regression analyses were also employed to identify the relationship between environmental and anthropogenic impacts on carbon stocks.</p><h3>Results</h3><p>The results indicated that the above-ground carbon and soil organic carbon stocks were higher than the other remaining carbon pools in MFBR. The mean carbon stock (32.59 M tonne) in 2017 was lower than in 1989 (34.76 Mt) of MFBR. Similarly, the EV of carbon stock in 2017 was lower than in 1989. Elevation, slope, and harvesting index are important environmental and disturbance factors resulting in major differences in carbon stock among study sites in MFBR.</p><h3>Conclusions</h3><p>Therefore, the gradual reduction of carbon stocks in connection with LULC change calls for urgent attention to implement successful conservation and sustainable use of forest resources in biosphere reserves.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-023-00243-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138497459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enteric methane emission factors of smallholder dairy farming systems across intensification gradients in the central highlands of Ethiopia","authors":"Abraham Abera Feyissa, Feyera Senbeta, Adugna Tolera, Dawit Diriba, Kalaya Boonyanuwat","doi":"10.1186/s13021-023-00242-0","DOIUrl":"10.1186/s13021-023-00242-0","url":null,"abstract":"<div><h3>Background</h3><p>Following global pledges to reduce greenhouse gas (GHG) emissions by 30% by 2030 compared to the baseline level of 2020, improved quantification of GHG emissions from developing countries has become crucial. However, national GHG inventories in most Sub-Saharan African countries use default (Tier I) emission factors (EF<sub>S</sub>) generated by the Intergovernmental Panel on Climate Change (IPCC) to estimate enteric CH<sub>4</sub> emissions from animal agriculture. The present study provides an improved enteric CH<sub>4</sub> emission estimate (Tier II) based on animal energy requirements derived from animal characteristics and performance data collected from about 2500 cattle in 480 households from three smallholder farming systems to represent the common dairy farming in the central highlands of Ethiopia. Using average seasonal feed digestibility data, we estimated daily methane production by class of animal and farming system and subsequently generated improved EF.</p><h3>Results</h3><p>Our findings revealed that the estimated average EF and emission intensities (EI) vary significantly across farming systems. The estimated value of EF for adult dairy cows was 73, 69, and 34 kg CH<sub>4</sub>/cow/year for urban, peri-urban, and rural farming systems, respectively. Rural dairy farming had significantly higher emission intensity (EI) estimated at 1.78 CO<sub>2</sub>-eq per kg of fat protein-corrected milk (FPCM) than peri-urban and urban 0.71 and 0.64 CO<sub>2</sub>-eq kg<sup>−1</sup> FPCM dairy farming systems, respectively. The EF estimates in this study are lower than the IPCC's (2019) default value for both stall-fed high-productive and dual-purpose low-productive cows.</p><h3>Conclusions</h3><p>The current findings can be used as a baseline for the national emission inventory, which can be used to quantify the effects of future interventions, potentially improving the country's commitment to reducing GHG emissions. Similarly, this study suggests that increased animal productivity through improved feed has a considerable mitigation potential for reducing enteric methane emissions in smallholder dairy farming systems in the study area.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138450606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Viola Heinrich, Jo House, David A. Gibbs, Nancy Harris, Martin Herold, Giacomo Grassi, Roberta Cantinho, Thais M. Rosan, Barbara Zimbres, Julia Z. Shimbo, Joana Melo, Tristram Hales, Stephen Sitch, Luiz E. O. C. Aragão
{"title":"Mind the gap: reconciling tropical forest carbon flux estimates from earth observation and national reporting requires transparency","authors":"Viola Heinrich, Jo House, David A. Gibbs, Nancy Harris, Martin Herold, Giacomo Grassi, Roberta Cantinho, Thais M. Rosan, Barbara Zimbres, Julia Z. Shimbo, Joana Melo, Tristram Hales, Stephen Sitch, Luiz E. O. C. Aragão","doi":"10.1186/s13021-023-00240-2","DOIUrl":"10.1186/s13021-023-00240-2","url":null,"abstract":"<div><h3>Background</h3><p>The application of different approaches calculating the anthropogenic carbon net flux from land, leads to estimates that vary considerably. One reason for these variations is the extent to which approaches consider forest land to be “managed” by humans, and thus contributing to the net anthropogenic flux. Global Earth Observation (EO) datasets characterising spatio-temporal changes in land cover and carbon stocks provide an independent and consistent approach to estimate forest carbon fluxes. These can be compared against results reported in National Greenhouse Gas Inventories (NGHGIs) to support accurate and timely measuring, reporting and verification (MRV). Using Brazil as a primary case study, with additional analysis in Indonesia and Malaysia, we compare a Global EO-based dataset of forest carbon fluxes to results reported in NGHGIs.</p><h3>Results</h3><p>Between 2001 and 2020, the EO-derived estimates of all forest-related emissions and removals indicate that Brazil was a net sink of carbon (− 0.2 GtCO<sub>2</sub>yr<sup>−1</sup>), while Brazil’s NGHGI reported a net carbon source (+ 0.8 GtCO<sub>2</sub>yr<sup>−1</sup>). After adjusting the EO estimate to use the Brazilian NGHGI definition of managed forest and other assumptions used in the inventory’s methodology, the EO net flux became a source of + 0.6 GtCO<sub>2</sub>yr<sup>−1</sup>, comparable to the NGHGI. Remaining discrepancies are due largely to differing carbon removal factors and forest types applied in the two datasets. In Indonesia, the EO and NGHGI net flux estimates were similar (+ 0.6 GtCO<sub>2</sub> yr<sup>−1</sup>), but in Malaysia, they differed in both magnitude and sign (NGHGI: -0.2 GtCO<sub>2</sub> yr<sup>−1</sup>; Global EO: + 0.2 GtCO<sub>2</sub> yr<sup>−1</sup>). Spatially explicit datasets on forest types were not publicly available for analysis from either NGHGI, limiting the possibility of detailed adjustments.</p><h3>Conclusions</h3><p>By adjusting the EO dataset to improve comparability with carbon fluxes estimated for managed forests in the Brazilian NGHGI, initially diverging estimates were largely reconciled and remaining differences can be explained. Despite limited spatial data available for Indonesia and Malaysia, our comparison indicated specific aspects where differing approaches may explain divergence, including uncertainties and inaccuracies. Our study highlights the importance of enhanced transparency, as set out by the Paris Agreement, to enable alignment between different approaches for independent measuring and verification.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662451/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138045947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yves Theoneste Murindangabo, Marek Kopecký, Trong Nghia Hoang, Jaroslav Bernas, Tulsi Parajuli, Suman Dhakal, Petr Konvalina, Jean de Dieu Marcel UFITIKIREZI, Gisele Kaneza, Babu Ram Khanal, Shiva Chandra Dhakal, Arjun Kumar Shrestha
{"title":"Comparative analysis of soil organic matter fractions, lability, stability ratios, and carbon management index in various land use types within bharatpur catchment, Chitwan District, Nepal","authors":"Yves Theoneste Murindangabo, Marek Kopecký, Trong Nghia Hoang, Jaroslav Bernas, Tulsi Parajuli, Suman Dhakal, Petr Konvalina, Jean de Dieu Marcel UFITIKIREZI, Gisele Kaneza, Babu Ram Khanal, Shiva Chandra Dhakal, Arjun Kumar Shrestha","doi":"10.1186/s13021-023-00241-1","DOIUrl":"10.1186/s13021-023-00241-1","url":null,"abstract":"<div><h3>Background</h3><p>Land use and land cover changes have a significant impact on the dynamics of soil organic matter (SOM) and its fractions, as well as on overall soil health. This study conducted in Bharatpur Catchment, Chitwan District, Nepal, aimed to assess and quantify variations in total soil organic matter (T<sub>SOMC</sub>), labile organic matter fraction (C<sub>L</sub>), stable organic matter fraction (C<sub>S</sub>), stability ratio (SR), and carbon management index (CMI) across seven land use types: pastureland, forestland, fruit orchards, small-scale conventional agricultural land, large-scale conventional agricultural land, large-scale alternative fallow and conventional agricultural land, and organic farming agricultural land. The study also explored the potential use of the Carbon Management Index (CMI) and stability ratio (SR) as indicators of soil degradation or improvement in response to land use changes.</p><h3>Results</h3><p>The findings revealed significant differences in mean values of T<sub>SOMC</sub>, C<sub>L</sub>, and C<sub>S</sub> among the different land use types. Forestland and organic farming exhibited significantly higher T<sub>SOMC</sub> (3.24%, 3.12%) compared to fruit orchard lands (2.62%), small scale conventional farming (2.22%), alternative fallow and conventional farming (2.06%), large scale conventional farming (1.84%) and pastureland (1.20%). Organic farming and Forestland also had significantly higher C<sub>L</sub> (1.85%, 1.84%) and C<sub>S</sub> (1.27%, 1.39%) compared to all other land use types. Forest and organic farming lands showed higher CMI values, while pastures and forests exhibited higher SR values compared to the rest of the land use types.</p><h3>Conclusions</h3><p>This study highlights the influence of various land use types on soil organic matter pools and demonstrates the potential of CMI and SR as indicators for assessing soil degradation or improvement in response to land use and land cover changes.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71476622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenyue Liu, Jinbing Zhang, Pengyan Zhang, Ling Jiang, Dan Yang, Tianqi Rong
{"title":"Spatial heterogeneity and scenario simulation of carbon budget on provincial scale in China","authors":"Zhenyue Liu, Jinbing Zhang, Pengyan Zhang, Ling Jiang, Dan Yang, Tianqi Rong","doi":"10.1186/s13021-023-00237-x","DOIUrl":"10.1186/s13021-023-00237-x","url":null,"abstract":"<div><h3>Background</h3><p>Conducting an extensive study on the spatial heterogeneity of the overall carbon budget and its influencing factors and the decoupling status of carbon emissions from economic development, by undertaking simulation projections under different carbon emission scenarios is crucial for China to achieve its targets to peak carbon emissions by 2030 and to achieve carbon neutrality by 2060. There are large disparities in carbon emissions from energy consumption, the extent of land used for carbon absorption, and the status of decoupling of emissions from economic development, among various regions of China.</p><h3>Results</h3><p>Based on night light data and land use data, we investigated carbon budget through model estimation, decoupling analysis, and scenario simulation. The results show that the carbon deficit had a continuous upward trend from 2000 to 2018, and there was a significant positive spatial correlation. The overall status of decoupling first improved and then deteriorated. Altogether, energy consumption intensity, population density of built-up land, and built-up land area influenced the decoupling of carbon emissions from economic development. There are significant scenarios of carbon emissions from energy consumption for the study area during the forecast period, only in the low-carbon scenario will the study area reach the expected carbon emissions peak ahead of schedule in 2027; the peak carbon emissions will be 6479.27 million tons.</p><h3>Conclusions</h3><p>China’s provincial-scale carbon emissions show a positive correlation with economic development within the study period. It is necessary to optimize the economic structure, transforming the economic development mode, and formulating policies to control the expansion of built-up land. Efforts must be made to improve technology and promote industrial restructuring, to effectively reduce energy consumption intensity.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510156/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41104024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingyu Zeng, Tao Zhou, Yixin Xu, Qiaoyu Lin, E. Tan, Yajie Zhang, Xuemei Wu, Jingzhou Zhang, Xia Liu
{"title":"The fusion of multiple scale data indicates that the carbon sink function of the Qinghai-Tibet Plateau is substantial","authors":"Jingyu Zeng, Tao Zhou, Yixin Xu, Qiaoyu Lin, E. Tan, Yajie Zhang, Xuemei Wu, Jingzhou Zhang, Xia Liu","doi":"10.1186/s13021-023-00239-9","DOIUrl":"10.1186/s13021-023-00239-9","url":null,"abstract":"<div><h3>Background</h3><p>The Qinghai-Tibet Plateau is the “sensitive area” of climate change, and also the “driver” and “amplifier” of global change. The response and feedback of its carbon dynamics to climate change will significantly affect the content of greenhouse gases in the atmosphere. However, due to the unique geographical environment characteristics of the Qinghai-Tibet Plateau, there is still much controversy about its carbon source and sink estimation results. This study designed a new algorithm based on machine learning to improve the accuracy of carbon source and sink estimation by integrating multiple scale carbon input (net primary productivity, NPP) and output (soil heterotrophic respiration, Rh) information from remote sensing and ground observations. Then, we compared spatial patterns of NPP and Rh derived from the fusion of multiple scale data with other widely used products and tried to quantify the differences and uncertainties of carbon sink simulation at a regional scale.</p><h3>Results</h3><p>Our results indicate that although global warming has potentially increased the Rh of the Qinghai-Tibet Plateau, it will also increase its NPP, and its current performance is a net carbon sink area (carbon sink amount is 22.3 Tg C/year). Comparative analysis with other data products shows that CASA, GLOPEM, and MODIS products based on remote sensing underestimate the carbon input of the Qinghai-Tibet Plateau (30–70%), which is the main reason for the severe underestimation of the carbon sink level of the Qinghai-Tibet Plateau (even considered as a carbon source).</p><h3>Conclusions</h3><p>The estimation of the carbon sink in the Qinghai-Tibet Plateau is of great significance for ensuring its ecological barrier function. It can deepen the community’s understanding of the response to climate change in sensitive areas of the plateau. This study can provide an essential basis for assessing the uncertainty of carbon sources and sinks in the Qinghai-Tibet Plateau, and also provide a scientific reference for helping China achieve “carbon neutrality” by 2060.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10223603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ivonne Albarus, Giorgia Fleischmann, Patrick Aigner, Philippe Ciais, Hugo Denier van der Gon, Rianne Droge, Jinghui Lian, Miguel Andrey Narvaez Rincon, Hervé Utard, Thomas Lauvaux
{"title":"From political pledges to quantitative mapping of climate mitigation plans: Comparison of two European cities","authors":"Ivonne Albarus, Giorgia Fleischmann, Patrick Aigner, Philippe Ciais, Hugo Denier van der Gon, Rianne Droge, Jinghui Lian, Miguel Andrey Narvaez Rincon, Hervé Utard, Thomas Lauvaux","doi":"10.1186/s13021-023-00236-y","DOIUrl":"10.1186/s13021-023-00236-y","url":null,"abstract":"<div><h3>\u0000 <b>Background</b>\u0000 </h3><p>Urban agglomerates play a crucial role in reaching global climate objectives. Many cities have committed to reducing their greenhouse gas emissions, but current emission trends remain unverifiable. Atmospheric monitoring of greenhouse gases offers an independent and transparent strategy to measure urban emissions. However, careful design of the monitoring network is crucial to be able to monitor the most important sectors as well as adjust to rapidly changing urban landscapes.</p><h3>\u0000 <b>Results</b>\u0000 </h3><p>Our study of Paris and Munich demonstrates how climate action plans, carbon emission inventories, and urban development plans can help design optimal atmospheric monitoring networks. We show that these two European cities display widely different trajectories in space and time, reflecting different emission reduction strategies and constraints due to administrative boundaries. The projected carbon emissions rely on future actions, hence uncertain, and we demonstrate how emission reductions vary significantly at the sub-city level.</p><h3>\u0000 <b>Conclusions</b>\u0000 </h3><p>We conclude that quantified individual cities’ climate actions are essential to construct more robust emissions trajectories at the city scale. Also, harmonization and compatibility of plans from various cities are necessary to make inter-comparisons of city climate targets possible. Furthermore, dense atmospheric networks extending beyond the city limits are needed to track emission trends over the coming decades.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10550149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive evaluation of carbon sequestration potential of landscape tree species and its influencing factors analysis: implications for urban green space management","authors":"Shanshan Jin, Ershan Zhang, Haotian Guo, Chuanwei Hu, Yaru Zhang, Dongfeng Yan","doi":"10.1186/s13021-023-00238-w","DOIUrl":"10.1186/s13021-023-00238-w","url":null,"abstract":"<div><h3>Background</h3><p>Continuous increasing carbon dioxide (CO<sub>2</sub>) has aggravated global warming and promoted urban tree planting projects for many countries. So it’s imperative to select high carbon sequestering landscape tree species while considering their aesthetic values of urban green space.</p><h3>Results</h3><p>32 tree species were selected as test objects which were commonly used in landscaping in Zhengzhou, a typical northern city of China. To assess the comprehensive carbon sequestration potential of landscape tree species in different plant configuration types, we simultaneously considered their daily net carbon sequestration per unit leaf area (<i>wCO</i><sub><i>2</i></sub>), daily net carbon sequestration per unit land area (<i>WCO</i><sub><i>2</i></sub>) and daily net carbon sequestration of the whole plant (<i>QCO</i><sub><i>2</i></sub>) through cluster analysis. Besides that, we found out the key factors affecting carbon sequestration potential of landscape tree species by redundancy analysis.</p><h3>Conclusion</h3><p><i>Populus</i>, <i>P Stenoptera</i>, <i>P. acerifolia</i> among large arbors (LA), <i>V odoratissimum</i>, <i>P. Serratifolia</i>, <i>S. oblata</i> among small arbors (SA), and <i>B sinica var. Parvifolia</i>, <i>B. Megistophylla</i>, <i>L quihoui</i> among shrubs (S) were recommended for local urban green space management. Photosynthetic rate (<i>Pn</i>), crown area (<i>CA</i>) and leaf area index (<i>LAI</i>) were the key factors which affected the comprehensive carbon sequestration potential both for LA, SA and S.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481583/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10178791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}