{"title":"Geometric Stabbing via Threshold Rounding and Factor Revealing LPs","authors":"Khaled Elbassioni, Saurabh Ray","doi":"10.1007/s00454-023-00608-8","DOIUrl":"https://doi.org/10.1007/s00454-023-00608-8","url":null,"abstract":"<p>Kovaleva and Spieksma (SIAM J Discrete Math 20(3):48–768, 2006) considered the problem of stabbing a given set of horizontal line segments with the smallest number of horizontal and vertical lines. The standard LP relaxation for this problem is easily shown to have an integrality gap of at most 2 by treating the horizontal and vertical lines separately. However, Kovaleva and Spieksma observed that threshold rounding can be used to obtain an integrality gap of <span>(e/(e-1) approx 1.58)</span> which is also shown to be tight. This is one of the rare known examples where the obvious upper bound of 2 on the integrality gap of the standard LP relaxation can be improved. Our goal in this paper is to extend their proof to two other problems where the goal is to stab a set <span>(mathcal {R})</span> of objects with horizontal and vertical lines: in the first problem <span>(mathcal {R})</span> is a set of horizontal and vertical line segments, and in the second problem <span>(mathcal {R})</span> is a set of unit sized squares. The proof of Kovaleva and Spieksma essentially shows the existence of an appropriate threshold which yields the improved approximation factor. We begin by showing that a random threshold picked from an appropriate distribution works. This reduces the problem to finding an appropriate distribution for a desired approximation ratio. In the first problem, we show that the required distribution can be found by solving a linear program. In the second problem, while it seems harder to find the optimal distribution, we show that using the uniform distribution an improved approximation factor can still be obtained by solving a number of linear programs.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"126 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ioannis Gkioulekas, Steven J. Gortler, Louis Theran, Todd Zickler
{"title":"Trilateration Using Unlabeled Path or Loop Lengths","authors":"Ioannis Gkioulekas, Steven J. Gortler, Louis Theran, Todd Zickler","doi":"10.1007/s00454-023-00605-x","DOIUrl":"https://doi.org/10.1007/s00454-023-00605-x","url":null,"abstract":"<p>Let <span>(textbf{p})</span> be a configuration of <i>n</i> points in <span>(mathbb R^d)</span> for some <i>n</i> and some <span>(d ge 2)</span>. Each pair of points defines an edge, which has a Euclidean length in the configuration. A path is an ordered sequence of the points, and a loop is a path that begins and ends at the same point. A path or loop, as a sequence of edges, also has a Euclidean length, which is simply the sum of its Euclidean edge lengths. We are interested in reconstructing <span>(textbf{p})</span> given a set of edge, path and loop lengths. In particular, we consider the unlabeled setting where the lengths are given simply as a set of real numbers, and are not labeled with the combinatorial data describing which paths or loops gave rise to these lengths. In this paper, we study the question of when <span>(textbf{p})</span> will be uniquely determined (up to an unknowable Euclidean transform) from some given set of path or loop lengths through an exhaustive trilateration process. Such a process has already been used for the simpler problem of reconstruction using unlabeled edge lengths. This paper also provides a complete proof that this process must work in that edge-setting when given a sufficiently rich set of edge measurements and assuming that <span>(textbf{p})</span> is generic.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"72 9-10","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ehrhart Quasi-Polynomials of Almost Integral Polytopes","authors":"Christopher de Vries, Masahiko Yoshinaga","doi":"10.1007/s00454-023-00604-y","DOIUrl":"https://doi.org/10.1007/s00454-023-00604-y","url":null,"abstract":"<p>A lattice polytope translated by a rational vector is called an almost integral polytope. In this paper, we study Ehrhart quasi-polynomials of almost integral polytopes. We study the connection between the shape of polytopes and the algebraic properties of the Ehrhart quasi-polynomials. In particular, we prove that lattice zonotopes and centrally symmetric lattice polytopes are characterized by Ehrhart quasi-polynomials of their rational translations.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"126 8","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Volumes of Subset Minkowski Sums and the Lyusternik Region","authors":"Franck Barthe, Mokshay Madiman","doi":"10.1007/s00454-023-00606-w","DOIUrl":"https://doi.org/10.1007/s00454-023-00606-w","url":null,"abstract":"<p>We begin a systematic study of the region of possible values of the volumes of Minkowski subset sums of a collection of <i>M</i> compact sets in <span>(mathbb {R}^d)</span>, which we call the Lyusternik region, and make some first steps towards describing it. Our main result is that a fractional generalization of the Brunn–Minkowski–Lyusternik inequality conjectured by Bobkov et al. (in: Houdré et al. (eds) Concentration, functional inequalities and isoperimetry. Contemporary mathematics, American Mathematical Society, Providence, 2011) holds in dimension 1. Even though Fradelizi et al. (C R Acad Sci Paris Sér I Math 354(2):185–189, 2016) showed that it fails in general dimension, we show that a variant does hold in any dimension.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"157 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138543760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James Davies, Tomasz Krawczyk, Rose McCarty, Bartosz Walczak
{"title":"Grounded L-Graphs Are Polynomially $$chi $$ -Bounded","authors":"James Davies, Tomasz Krawczyk, Rose McCarty, Bartosz Walczak","doi":"10.1007/s00454-023-00592-z","DOIUrl":"https://doi.org/10.1007/s00454-023-00592-z","url":null,"abstract":"<p>A <i>grounded L-graph</i> is the intersection graph of a collection of “L” shapes whose topmost points belong to a common horizontal line. We prove that every grounded L-graph with clique number <span>(omega )</span> has chromatic number at most <span>(17omega ^4)</span>. This improves the doubly-exponential bound of McGuinness and generalizes the recent result that the class of circle graphs is polynomially <span>(chi )</span>-bounded. We also survey <span>(chi )</span>-boundedness problems for grounded geometric intersection graphs and give a high-level overview of recent techniques to obtain polynomial bounds.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"14 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138543213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some New Results on Geometric Transversals","authors":"Otfried Cheong, Xavier Goaoc, Andreas F. Holmsen","doi":"10.1007/s00454-023-00573-2","DOIUrl":"https://doi.org/10.1007/s00454-023-00573-2","url":null,"abstract":"<p>We investigate a number of questions, problems, and conjectures related to geometric transversal theory. Among our results we disprove a conjecture of Bárány and Kalai regarding weak <span>(varepsilon )</span>-nets for <i>k</i>-flats and convex sets in <span>(mathbb {R}^d)</span>, and we prove a conjecture of Arocha, Bracho, and Montejano regarding a colorful version of the Goodman–Pollack–Wenger transversal theorem. We also investigate the connected components of the space of line transversals to pairwise disjoint convex sets in <span>(mathbb {R}^3)</span>, and we extend a theorem of Karasev and Montejano regarding colorful intersections and <i>k</i>-transversals.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"130 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Visible-Volume Function of a Set of Cameras is Continuous, Piecewise Rational, Locally Lipschitz, and Semi-Algebraic in All Dimensions","authors":"Jörg Rambau","doi":"10.1007/s00454-023-00541-w","DOIUrl":"https://doi.org/10.1007/s00454-023-00541-w","url":null,"abstract":"","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"70 1","pages":"1038 - 1058"},"PeriodicalIF":0.8,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43661006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}