James Davies, Tomasz Krawczyk, Rose McCarty, Bartosz Walczak
{"title":"接地l -图是多项式$$\\chi $$有界的","authors":"James Davies, Tomasz Krawczyk, Rose McCarty, Bartosz Walczak","doi":"10.1007/s00454-023-00592-z","DOIUrl":null,"url":null,"abstract":"<p>A <i>grounded L-graph</i> is the intersection graph of a collection of “L” shapes whose topmost points belong to a common horizontal line. We prove that every grounded L-graph with clique number <span>\\(\\omega \\)</span> has chromatic number at most <span>\\(17\\omega ^4\\)</span>. This improves the doubly-exponential bound of McGuinness and generalizes the recent result that the class of circle graphs is polynomially <span>\\(\\chi \\)</span>-bounded. We also survey <span>\\(\\chi \\)</span>-boundedness problems for grounded geometric intersection graphs and give a high-level overview of recent techniques to obtain polynomial bounds.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Grounded L-Graphs Are Polynomially $$\\\\chi $$ -Bounded\",\"authors\":\"James Davies, Tomasz Krawczyk, Rose McCarty, Bartosz Walczak\",\"doi\":\"10.1007/s00454-023-00592-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>grounded L-graph</i> is the intersection graph of a collection of “L” shapes whose topmost points belong to a common horizontal line. We prove that every grounded L-graph with clique number <span>\\\\(\\\\omega \\\\)</span> has chromatic number at most <span>\\\\(17\\\\omega ^4\\\\)</span>. This improves the doubly-exponential bound of McGuinness and generalizes the recent result that the class of circle graphs is polynomially <span>\\\\(\\\\chi \\\\)</span>-bounded. We also survey <span>\\\\(\\\\chi \\\\)</span>-boundedness problems for grounded geometric intersection graphs and give a high-level overview of recent techniques to obtain polynomial bounds.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00592-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00592-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Grounded L-Graphs Are Polynomially $$\chi $$ -Bounded
A grounded L-graph is the intersection graph of a collection of “L” shapes whose topmost points belong to a common horizontal line. We prove that every grounded L-graph with clique number \(\omega \) has chromatic number at most \(17\omega ^4\). This improves the doubly-exponential bound of McGuinness and generalizes the recent result that the class of circle graphs is polynomially \(\chi \)-bounded. We also survey \(\chi \)-boundedness problems for grounded geometric intersection graphs and give a high-level overview of recent techniques to obtain polynomial bounds.