接地l -图是多项式$$\chi $$有界的

Pub Date : 2023-11-16 DOI:10.1007/s00454-023-00592-z
James Davies, Tomasz Krawczyk, Rose McCarty, Bartosz Walczak
{"title":"接地l -图是多项式$$\\chi $$有界的","authors":"James Davies, Tomasz Krawczyk, Rose McCarty, Bartosz Walczak","doi":"10.1007/s00454-023-00592-z","DOIUrl":null,"url":null,"abstract":"<p>A <i>grounded L-graph</i> is the intersection graph of a collection of “L” shapes whose topmost points belong to a common horizontal line. We prove that every grounded L-graph with clique number <span>\\(\\omega \\)</span> has chromatic number at most <span>\\(17\\omega ^4\\)</span>. This improves the doubly-exponential bound of McGuinness and generalizes the recent result that the class of circle graphs is polynomially <span>\\(\\chi \\)</span>-bounded. We also survey <span>\\(\\chi \\)</span>-boundedness problems for grounded geometric intersection graphs and give a high-level overview of recent techniques to obtain polynomial bounds.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Grounded L-Graphs Are Polynomially $$\\\\chi $$ -Bounded\",\"authors\":\"James Davies, Tomasz Krawczyk, Rose McCarty, Bartosz Walczak\",\"doi\":\"10.1007/s00454-023-00592-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>grounded L-graph</i> is the intersection graph of a collection of “L” shapes whose topmost points belong to a common horizontal line. We prove that every grounded L-graph with clique number <span>\\\\(\\\\omega \\\\)</span> has chromatic number at most <span>\\\\(17\\\\omega ^4\\\\)</span>. This improves the doubly-exponential bound of McGuinness and generalizes the recent result that the class of circle graphs is polynomially <span>\\\\(\\\\chi \\\\)</span>-bounded. We also survey <span>\\\\(\\\\chi \\\\)</span>-boundedness problems for grounded geometric intersection graphs and give a high-level overview of recent techniques to obtain polynomial bounds.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00592-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00592-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

一个接地L图是“L”形集合的交点图,其顶点属于一条公共水平线。证明了每一个团数为\(\omega \)的接地l图最多有一个色数\(17\omega ^4\)。这改进了McGuinness的双指数界,推广了最近关于圆图类是多项式\(\chi \)有界的结论。我们还研究了接地几何相交图的\(\chi \)有界性问题,并对获得多项式界的最新技术进行了高级概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Grounded L-Graphs Are Polynomially $$\chi $$ -Bounded

分享
查看原文
Grounded L-Graphs Are Polynomially $$\chi $$ -Bounded

A grounded L-graph is the intersection graph of a collection of “L” shapes whose topmost points belong to a common horizontal line. We prove that every grounded L-graph with clique number \(\omega \) has chromatic number at most \(17\omega ^4\). This improves the doubly-exponential bound of McGuinness and generalizes the recent result that the class of circle graphs is polynomially \(\chi \)-bounded. We also survey \(\chi \)-boundedness problems for grounded geometric intersection graphs and give a high-level overview of recent techniques to obtain polynomial bounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信