Volumes of Subset Minkowski Sums and the Lyusternik Region

Pub Date : 2023-11-21 DOI:10.1007/s00454-023-00606-w
Franck Barthe, Mokshay Madiman
{"title":"Volumes of Subset Minkowski Sums and the Lyusternik Region","authors":"Franck Barthe, Mokshay Madiman","doi":"10.1007/s00454-023-00606-w","DOIUrl":null,"url":null,"abstract":"<p>We begin a systematic study of the region of possible values of the volumes of Minkowski subset sums of a collection of <i>M</i> compact sets in <span>\\(\\mathbb {R}^d\\)</span>, which we call the Lyusternik region, and make some first steps towards describing it. Our main result is that a fractional generalization of the Brunn–Minkowski–Lyusternik inequality conjectured by Bobkov et al. (in: Houdré et al. (eds) Concentration, functional inequalities and isoperimetry. Contemporary mathematics, American Mathematical Society, Providence, 2011) holds in dimension 1. Even though Fradelizi et al. (C R Acad Sci Paris Sér I Math 354(2):185–189, 2016) showed that it fails in general dimension, we show that a variant does hold in any dimension.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00606-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We begin a systematic study of the region of possible values of the volumes of Minkowski subset sums of a collection of M compact sets in \(\mathbb {R}^d\), which we call the Lyusternik region, and make some first steps towards describing it. Our main result is that a fractional generalization of the Brunn–Minkowski–Lyusternik inequality conjectured by Bobkov et al. (in: Houdré et al. (eds) Concentration, functional inequalities and isoperimetry. Contemporary mathematics, American Mathematical Society, Providence, 2011) holds in dimension 1. Even though Fradelizi et al. (C R Acad Sci Paris Sér I Math 354(2):185–189, 2016) showed that it fails in general dimension, we show that a variant does hold in any dimension.

Abstract Image

分享
查看原文
子集Minkowski和的体积与Lyusternik域
我们开始系统地研究\(\mathbb {R}^d\)中M紧集集合的Minkowski子集和的体积可能值的区域,我们称之为Lyusternik区域,并对它进行了一些初步的描述。我们的主要结果是由Bobkov等人推测的Brunn-Minkowski-Lyusternik不等式的分数推广(见:houdr等人编)浓度,功能不等式和等尺度。当代数学,美国数学学会,普罗维登斯,2011年)持有维度1。尽管Fradelizi等人(C R巴黎科学学院ssamr I数学354(2):185-189,2016)表明它在一般维度上失败,但我们表明变体在任何维度上都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信