Ehrhart Quasi-Polynomials of Almost Integral Polytopes

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Christopher de Vries, Masahiko Yoshinaga
{"title":"Ehrhart Quasi-Polynomials of Almost Integral Polytopes","authors":"Christopher de Vries, Masahiko Yoshinaga","doi":"10.1007/s00454-023-00604-y","DOIUrl":null,"url":null,"abstract":"<p>A lattice polytope translated by a rational vector is called an almost integral polytope. In this paper, we study Ehrhart quasi-polynomials of almost integral polytopes. We study the connection between the shape of polytopes and the algebraic properties of the Ehrhart quasi-polynomials. In particular, we prove that lattice zonotopes and centrally symmetric lattice polytopes are characterized by Ehrhart quasi-polynomials of their rational translations.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"126 8","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00604-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

Abstract

A lattice polytope translated by a rational vector is called an almost integral polytope. In this paper, we study Ehrhart quasi-polynomials of almost integral polytopes. We study the connection between the shape of polytopes and the algebraic properties of the Ehrhart quasi-polynomials. In particular, we prove that lattice zonotopes and centrally symmetric lattice polytopes are characterized by Ehrhart quasi-polynomials of their rational translations.

Abstract Image

几乎整多边形的Ehrhart拟多项式
由有理向量平移的晶格多面体称为几乎整多面体。本文研究了概整多边形的Ehrhart拟多项式。研究了多面体的形状与Ehrhart拟多项式的代数性质之间的联系。特别地,我们证明了点阵带拓扑和中心对称点阵多面体是由它们的有理平移的Ehrhart拟多项式表征的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信