Dynamics of Atmospheres and Oceans最新文献

筛选
英文 中文
Comments on “horizontal gravity disturbance vector in atmospheric dynamics” by Peter C. Chu 对朱棣文“大气动力学中的水平重力扰动矢量”的评析
IF 1.7 4区 地球科学
Dynamics of Atmospheres and Oceans Pub Date : 2023-09-01 DOI: 10.1016/j.dynatmoce.2023.101382
Edmund K.M. Chang , Christopher L.P. Wolfe , Andrew L. Stewart , James C. McWilliams
{"title":"Comments on “horizontal gravity disturbance vector in atmospheric dynamics” by Peter C. Chu","authors":"Edmund K.M. Chang ,&nbsp;Christopher L.P. Wolfe ,&nbsp;Andrew L. Stewart ,&nbsp;James C. McWilliams","doi":"10.1016/j.dynatmoce.2023.101382","DOIUrl":"https://doi.org/10.1016/j.dynatmoce.2023.101382","url":null,"abstract":"<div><p>In a recent paper [Chu (2023; Chu23)], the author formulated the equations governing atmospheric motion in a spheroidal coordinate system. Since the mass distribution of the Earth is not exactly spheroidal, the true gravity is not vertical in that coordinate system. Chu23 compared the magnitude of the static horizontal component of gravity in that system to those of the dynamically active forces and concluded that the horizontal components of gravity should not be neglected. In recent papers by the authors [Chang and Wolfe (2022; CW22) and Stewart and McWilliams (2022; CW22)], we explained that the actual interpretation of the approximation made in atmospheric and oceanic modeling is not neglecting the horizontal component of the true gravity, but is a geometrical approximation, approximating nearly spheroidal geopotential surfaces with bumps on which the true gravity is vertical by exactly spheroidal surfaces. We showed that under such an interpretation, the errors due to the geometrical approximation are small. Chu23 claimed that CW22 and SM22 erroneously neglected the gravity perturbations in their analyses. Here, we explain further the differences between these approaches, in the process showing that the criticisms of Chu23 on CW22 and SM22 are invalid, further supporting our conclusion that the horizontal component of the true gravity is not relevant in ocean and atmospheric dynamics. Physically, the reason why horizontal gravity is irrelevant in the coordinate system used by Chu23 is that it is balanced by a static horizontal pressure gradient force.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"103 ","pages":"Article 101382"},"PeriodicalIF":1.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49705482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studying the evolution of Uttarkashi cloudburst event from reanalysis datasets–A case study 从再分析数据集研究乌塔卡什暴雨事件的演变——以实例为例
IF 1.7 4区 地球科学
Dynamics of Atmospheres and Oceans Pub Date : 2023-09-01 DOI: 10.1016/j.dynatmoce.2023.101387
Shivaji Singh Patel , A. Routray , Devajyoti Dutta , Rajeev Bhatla , Vivek Singh , John P. George
{"title":"Studying the evolution of Uttarkashi cloudburst event from reanalysis datasets–A case study","authors":"Shivaji Singh Patel ,&nbsp;A. Routray ,&nbsp;Devajyoti Dutta ,&nbsp;Rajeev Bhatla ,&nbsp;Vivek Singh ,&nbsp;John P. George","doi":"10.1016/j.dynatmoce.2023.101387","DOIUrl":"https://doi.org/10.1016/j.dynatmoce.2023.101387","url":null,"abstract":"<div><p><span>In recent years, the frequency and severity of cloudburst considerably increased over southern rim of Himalayas due to hot climate that leads to loss of human lives and damage properties. The observed rainfall data shows that cloudburst events with heavy rainfall ∼ 100–200 mm/day are common over the Himalayan region during the summer monsoon period. It is very necessary to understand the mechanisms associated with such type of short span of high impact localised weather events over the regions where observations are limited. Therefore, one of best way to study the mechanism associated with the formation and development of cloudburst is using the available high resolution reanalysis datasets. An effort is made to understand the role of atmospheric conditions that control the evolution of cloudburst event by considering two reanalyses datasets such as high resolution </span>IMDAA<span> and ERA5 reanalyses. The present study analysed a cloudburst case that occurred on 3rd August 2012 at 10 pm with heavy rainfall of ∼ 100 mm in a very short span of time over the Uttarkashi district. Various dynamic and thermodynamic parameters are calculated from the two datasets with an aim of determining the best representation of severity of the cloudburst event. It is noticed that the evolution of dynamic and thermodynamic variables is well represented in the high resolution IMDAA dataset as compared to the ERA5 dataset. The amount and spatial distribution of rainfall from IMDAA reanalyses are well comparable with satellite estimated rainfall (GPM), having better correlation (0.60) with the observed rainfall as compared to the ERA5 (0.28). The rainfall time bias over the Uttarkashi district is larger in ERA5 reanalyses (∼ 5 h) than in the IMDAA (∼ 3 h). The ERA5 is not able to capture such type of localise high rainfall event due to its low resolution, compared to high resolution reanalyses (12 km) of IMDAA. The observations also indicate that the moisture flux<span> from the Bay of Bengal (BoB) and Arabian Sea interacted with northwesterly dry air over Uttarkashi and the orographic uplifting resulted the cloudburst. Overall, results show that the eveolution and mechanism associated with the cloudburst is better represented in IMDAA than the ERA5. More cases are required to be studied to further support the findings of this study.</span></span></p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"103 ","pages":"Article 101387"},"PeriodicalIF":1.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49705467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the FIO-CPS v2.0 in predicting 2-meter air temperature over China FIO-CPS v2.0对中国2米气温预报的评价
IF 1.7 4区 地球科学
Dynamics of Atmospheres and Oceans Pub Date : 2023-09-01 DOI: 10.1016/j.dynatmoce.2023.101391
Qiuying Fu , Zhenya Song , Zhongkai Bo , Ying Bao , Chan Joo Jang , Yajuan Song
{"title":"Assessment of the FIO-CPS v2.0 in predicting 2-meter air temperature over China","authors":"Qiuying Fu ,&nbsp;Zhenya Song ,&nbsp;Zhongkai Bo ,&nbsp;Ying Bao ,&nbsp;Chan Joo Jang ,&nbsp;Yajuan Song","doi":"10.1016/j.dynatmoce.2023.101391","DOIUrl":"https://doi.org/10.1016/j.dynatmoce.2023.101391","url":null,"abstract":"<div><p>The climate prediction<span> system is an essential tool for predicting climatological state and variability. Systematic evaluation of the output is critical for assessing the prediction performance and making improvement. In this study, we evaluate the prediction capability of the First Institute of Oceanography-Climate Prediction System version 2.0 (FIO-CPS v2.0), a short-term climate prediction system, on the 2-meter air temperature over China using five criteria, namely prediction score (PS), prediction consistency (PC), correlation coefficient<span> (CC), root mean square error (RMSE), and distance between indices of simulation and observation (DISO). The results showed that FIO-CPS v2.0 has higher accuracy in summer, and its performance varies with different lead times depending on the evaluation criteria used. Higher overall prediction skill was mostly found in the northeastern region during July and September, and the southeastern coastal region during June–September. Our findings provide insights into the prediction ability of the FIO-CPS v2.0 on air temperature and may help to facilitate its development.</span></span></p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"103 ","pages":"Article 101391"},"PeriodicalIF":1.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49705262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the unprecedented summer 2022 penetration of the Indian monsoon to Iran and evaluation of global and regional model forecasts 调查2022年夏季前所未有的印度季风对伊朗的渗透,并评估全球和区域模式预测
IF 1.7 4区 地球科学
Dynamics of Atmospheres and Oceans Pub Date : 2023-09-01 DOI: 10.1016/j.dynatmoce.2023.101386
Zahra Ghassabi , Sara Karami , Ahad Vazifeh , Maral Habibi
{"title":"Investigating the unprecedented summer 2022 penetration of the Indian monsoon to Iran and evaluation of global and regional model forecasts","authors":"Zahra Ghassabi ,&nbsp;Sara Karami ,&nbsp;Ahad Vazifeh ,&nbsp;Maral Habibi","doi":"10.1016/j.dynatmoce.2023.101386","DOIUrl":"https://doi.org/10.1016/j.dynatmoce.2023.101386","url":null,"abstract":"<div><p>The Indian Summer Monsoon (ISM) significantly impacts the climate of the Asian continent. During the summer of 2022, the penetration of monsoonal waves towards higher latitudes led to severe and unprecedented floods in various parts of Iran, Pakistan, and southern Afghanistan. In this study, we utilized meteorological data from weather stations, satellite remote sensing, reanalysis data, and teleconnection indices to investigate the penetration of monsoonal waves at higher latitudes in Iran. We also employed outputs from two global models, the Global Forecast System (GFS) and Climate Forecast System (CFS), and the Weather Research and Forecasting Model (WRF) regional model, to examine their forecasts of heavy monsoon rains. Our analysis of teleconnection indices revealed that La Niña, combined with a negative or neutral Dipole Mode Index (DMI) and a positive Indian Monsoon Index (IMI), intensified monsoon-related rainfall in the region. The low-pressure system over India weakened, while the system over central Iran strengthened. Additionally, we observed a meridional rotation of the Somali low-level jet. Generally, southern to southwestern Iran, as well as central and eastern regions, receive moisture from the Arabian Sea due to southerly and easterly winds from water surfaces. Comparing forecasts with 2–7 days lead times and extended 10–15 days from the CFS and GFS global models demonstrated that neither of models accurately predicted the observed range of rainfall over Iran in the extended period. However, the WRF regional model predictions were significantly better. We also discovered that the 48-hour forecast from the WRF model outperformed other forecasts for this case study.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"103 ","pages":"Article 101386"},"PeriodicalIF":1.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49705442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An assessment of air-sea CO2 flux parameterizations during tropical cyclones in the Bay of Bengal 孟加拉湾热带气旋期间海气CO2通量参数化的评估
IF 1.7 4区 地球科学
Dynamics of Atmospheres and Oceans Pub Date : 2023-09-01 DOI: 10.1016/j.dynatmoce.2023.101390
Trishneeta Bhattacharya , Kunal Chakraborty , Sriram Anthoor , Prasanna Kanti Ghoshal
{"title":"An assessment of air-sea CO2 flux parameterizations during tropical cyclones in the Bay of Bengal","authors":"Trishneeta Bhattacharya ,&nbsp;Kunal Chakraborty ,&nbsp;Sriram Anthoor ,&nbsp;Prasanna Kanti Ghoshal","doi":"10.1016/j.dynatmoce.2023.101390","DOIUrl":"https://doi.org/10.1016/j.dynatmoce.2023.101390","url":null,"abstract":"<div><p>The exchange of air-sea CO<sub>2</sub> plays a significant role in regulating the Earth’s climate. The errors associated with the estimations of air-sea CO<sub>2</sub><span> fluxes during extreme transient events like tropical cyclones (TCs) are important for climate research. In this study, we assess the estimates of CO</span><sub>2</sub> gas transfer velocity and the corresponding air-sea flux derived by employing five wind-dependent and two wave-dependent parameterizations for eight TCs in the Bay of Bengal using mooring observations and reanalysis datasets. To start with, we analyze drag coefficient (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span>) and associated frictional velocity (<span><math><msup><mrow><mi>u</mi></mrow><mrow><mo>*</mo></mrow></msup></math></span><span>) derived from two globally very commonly used bulk flux algorithms, COARE 3.0 and the updated version COARE 3.6, with the estimates from wind-wave tank experiments for moderate and high wind speeds for all TCs. The analysis indicates that COARE 3.6 provides the best estimate of drag coefficient. Further, we find that the wave-dependent parameterization by Woolf (2005) provides the best estimates of CO</span><sub>2</sub> gas transfer velocity compared to existing estimates of laboratory-based wind-wave tank experiments for high winds. Among all wind-only parameterizations, the hybrid parameterization proposed by Nightingale et al. (2000) performs best for high winds. We find that for winds &lt; 20 m/s, the resultant fluxes of CO<sub>2</sub> estimated using these seven parameterizations vary within 5 mmol CO<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>. However, for winds &gt; 20 m/s, the difference between wind- and wave-parameterized fluxes are significant (∼50 mmol CO<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>). The percentage of variation in CO<sub>2</sub> flux explained by transfer velocity (difference in sea and air pCO<sub>2</sub>) during TC conditions is nearly 78 (15)%.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"103 ","pages":"Article 101390"},"PeriodicalIF":1.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49705261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A statistical analysis of tropical salinity and its relationship to SST, highlighting two contrasting areas 热带盐度及其与海温关系的统计分析,突出了两个对比区域
IF 1.7 4区 地球科学
Dynamics of Atmospheres and Oceans Pub Date : 2023-09-01 DOI: 10.1016/j.dynatmoce.2023.101384
Mark R. Jury
{"title":"A statistical analysis of tropical salinity and its relationship to SST, highlighting two contrasting areas","authors":"Mark R. Jury","doi":"10.1016/j.dynatmoce.2023.101384","DOIUrl":"https://doi.org/10.1016/j.dynatmoce.2023.101384","url":null,"abstract":"<div><p><span>Tropical air-sea interactions, near-surface salinity<span> (Ss), and sea surface temperature (SST) fluctuations are studied via ocean reanalysis products in the period 1980–2020. The statistical work considers how the net heat and water balance affects mixed layer depth (MLD) and coupling between the upper ocean and atmosphere. Field correlations of Ss – SST exhibit significant negative values in tropical latitudes 10S-15 N, between the semi-permanent marine anticyclones and the equatorial trough. Highlighting contrasts in two areas: the tropical east Atlantic and subtropical southwest Indian Ocean, annual cycles, inter-annual fluctuations of 6 – 8 yr, and long-term downward trends of Ss emerge. The SW Indian Ocean exhibits large swings of net heat and water balance as the monsoon reverses, and steady running-correlations of Ss and SST. The E Atlantic has a subdued annual cycle, and running-correlations are weak and unsteady. In both areas the Ss lags SST by a month. A fresh minus salty composite analysis reveals that the two contrasting areas respond to opposing phases of the </span></span>Southern Oscillation<span>: E Atlantic (La Nina) and SW Indian (El Nino). Projected long-term trends for increased tropical marine rainfall could be neutralized by declining runoff from continental monsoons. Statistical outcomes infer that a 0.1 ppt reduction of near-surface salinity leads to a 5 m reduction of MLD and a 0.4 C increase of tropical SST, contributing to deeper atmospheric convection. Limitations of the study derive from inferences based on infrequent salinity measurements.</span></p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"103 ","pages":"Article 101384"},"PeriodicalIF":1.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49705444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of convection scheme on ENSO prediction of SINTEX-F2 对流方案对SINTEX-F2 ENSO预报的影响
IF 1.7 4区 地球科学
Dynamics of Atmospheres and Oceans Pub Date : 2023-09-01 DOI: 10.1016/j.dynatmoce.2023.101385
Yuya Baba
{"title":"Impact of convection scheme on ENSO prediction of SINTEX-F2","authors":"Yuya Baba","doi":"10.1016/j.dynatmoce.2023.101385","DOIUrl":"https://doi.org/10.1016/j.dynatmoce.2023.101385","url":null,"abstract":"<div><p>A spectral cumulus parameterization (spectral scheme) is implemented in Scale Interaction Experiment Frontier version 2 (SINTEX-F2) seasonal prediction system, and the impact on the El Niño Southern Oscillation<span> (ENSO) prediction is examined. By conducting hindcast experiments using the original convection scheme (Tiedtke scheme) and the spectral scheme, and comparing the ENSO prediction skill, the impact of the spectral scheme is analyzed in detail. It was found that prediction skill in terms of ENSO phase and the sea surface temperature<span><span> (SST) persistence were improved by using the spectral scheme, but the root-mean-square error (RMSE) increased. The ENSO feedback was also changed by changing the convection scheme. The original scheme failed to predict the zonal wind stress anomaly toward the Niño 3.4 region, whereas the spectral scheme simulated it over the equatorial eastern Pacific with narrowing the meridional width, indicating that the spectral scheme strengthened the ENSO feedback. The spectral scheme also improved zonal-vertical atmospheric response to the Niño 3.4 index due to its advantageous features. Analysis of the ENSO feedback terms revealed that strengthened forcing in the eastern Pacific improved the </span>thermocline<span> feedback of ENSO, as its reversed timing of positive and negative tendencies for the mixed layer temperature matched that estimated from the reanalysis data. In conclusion, the spectral scheme can improve ENSO prediction through the atmospheric forcing and mean state in the eastern Pacific which impacted the ocean properties. It improved the phase error by improving thermocline feedback, but did not improve the RMSE. Tuning of the original scheme to obtain additional improvements to ENSO prediction would be difficult, since it requires modification of detailed convective cloud properties to correct the phase error. The spectral scheme tends to overestimate the ENSO amplitude, i.e., large RMSE, but this drawback can be mitigated by tuning the convection scheme so that it suppresses the warm SST climate drift, and this is considered the more promising method to further improve ENSO prediction.</span></span></span></p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"103 ","pages":"Article 101385"},"PeriodicalIF":1.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49756927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Significant wave height prediction based on dynamic graph neural network with fusion of ocean characteristics 基于融合海洋特征的动态图神经网络显著波高预测
IF 1.7 4区 地球科学
Dynamics of Atmospheres and Oceans Pub Date : 2023-09-01 DOI: 10.1016/j.dynatmoce.2023.101388
Yao Zhang , Lingyu Xu , Jie Yu
{"title":"Significant wave height prediction based on dynamic graph neural network with fusion of ocean characteristics","authors":"Yao Zhang ,&nbsp;Lingyu Xu ,&nbsp;Jie Yu","doi":"10.1016/j.dynatmoce.2023.101388","DOIUrl":"https://doi.org/10.1016/j.dynatmoce.2023.101388","url":null,"abstract":"<div><p>Significant wave height (SWH) is one of the core parameters for wave and accurate prediction of SWH is of great importance for ocean resource assessment. In this paper, we propose a new multi-characteristic and multi-node SWH prediction model(MCMN). The model considers the lead–lag effect among ocean characteristics and utilizes time lag correlation to automatically learn advanced indication information. For the temporal features, temporal correlations are extracted from high-dimensional spatial features efficiently in parallel using Temporal Convolutional Network(TCN). Additionally, the dependencies between nodes are modeled as the joint result of stable long-term patterns and dynamic short-term patterns. To obtain these dependencies, we introduce a novel dynamic graph neural network. Compared to previous SWH predictions focused solely on individual nodes, this model allows us to more fully explore the spatio-temporal dependencies between the nodes by capturing both long-term and short-term spatio-temporal relationship patterns among the nodes. Experiments were conducted with 120 nodes in the South China Sea and East China Sea, respectively. The results show that the model provides reliable predictions. Finally, we compare with five deep learning models, and the results show that our model has better performance in multi-node and multi-step SWH prediction.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"103 ","pages":"Article 101388"},"PeriodicalIF":1.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49760546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How and what turbulent are deep Mariana Trench waters? 马里亚纳海沟深处的海水是如何湍流的?
IF 1.7 4区 地球科学
Dynamics of Atmospheres and Oceans Pub Date : 2023-09-01 DOI: 10.1016/j.dynatmoce.2023.101372
Hans van Haren
{"title":"How and what turbulent are deep Mariana Trench waters?","authors":"Hans van Haren","doi":"10.1016/j.dynatmoce.2023.101372","DOIUrl":"https://doi.org/10.1016/j.dynatmoce.2023.101372","url":null,"abstract":"<div><p>To study potentially turbulent water motions near the deepest point on Earth in the Challenger Deep of the Mariana Trench, a 588-m long string equipped with specially designed sensitive temperature sensors was moored for nearly three years. Detailed analysis of one year of good data distinguishes ubiquitous internal tidal waves and hundreds of meters slanted convection turbulent spurs due to internal waves’ breaking from above. The spurs, or intrusions of anomalous waters, can occur on a tidal periodicity. Some tidal wave breaking including 100-m tall turbulent overturns reaching the trench floor is associated with warm waters that push from above, and of which the largest occurred during the passing of a tropical storm. The various turbulence types prevent the hadal, below 6000 m, waters from being stagnant, which is an important necessity for deep-trench life.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"103 ","pages":"Article 101372"},"PeriodicalIF":1.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49705503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to Survive Intensive Harvesting: The High Recruitment Rates of the Precious Mediterranean Red Coral (Corallium rubrum L. 1758) 如何在集约化采伐中生存:珍贵的地中海红珊瑚(Corallium rubrum L. 1758)的高复种率
IF 1.7 4区 地球科学
Dynamics of Atmospheres and Oceans Pub Date : 2023-08-27 DOI: 10.3390/oceans4030021
M. Benedetti, L. Bramanti, G. Santangelo
{"title":"How to Survive Intensive Harvesting: The High Recruitment Rates of the Precious Mediterranean Red Coral (Corallium rubrum L. 1758)","authors":"M. Benedetti, L. Bramanti, G. Santangelo","doi":"10.3390/oceans4030021","DOIUrl":"https://doi.org/10.3390/oceans4030021","url":null,"abstract":"The recruitment process is a fundamental step in population life cycles that determines survival, population demographic structure, and dynamics. The success of recruitment events repeated over successive years greatly affects the survival of long-lived gorgonian populations. Here, we report the recruitment process of the precious, heavily harvested Mediterranean gorgonian Corallium rubrum (red coral) on both settlement tiles and natural substrates over different Mediterranean areas. Red coral is a gonochoric internal brooder that reproduces in early summer. Lecithotrophic planulae settle 15–30 days after release in semi-dark environments at depths between 15 and 800 m. In autumn, 0.58–0.68 mm-wide recruits can be observed on the vaults of small crevices and caves and on rocky cliffs and boulders. Owing to their small size, there is limited knowledge of C. rubrum recruitment in the field. In this study, we examined the recruitment density and distribution in Canadells (Banyuls sur Mer, France) and Calafuria (Livorno, Italy) and compared these findings with those collected over different Mediterranean areas. Red coral exhibited high recruitment values ranging from 0.43 to 13.19 recruits dm−2. The distribution pattern of recruits, examined at a small spatial scale via nearest-neighbor distance analysis, revealed a significantly higher patch frequency on the natural substrate than on settlement tiles, presumably because of the scarcely available spots of free space on the former substrate, which are crowded by competitor species.","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"25 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83361077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信