Mohammad Nazeri Tahroudi , Rasoul Mirabbasi , Aliheidar Nasrolahi
{"title":"Investigating the possibilities of temperature concentration distribution in Zayanderood based on climate change","authors":"Mohammad Nazeri Tahroudi , Rasoul Mirabbasi , Aliheidar Nasrolahi","doi":"10.1016/j.dynatmoce.2024.101454","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, temperature changes and its concentration distribution in the period of 1984–2015 and 2015–2100 were investigated under CanESM5 climate model and SSP126, SSP245 and SSP585 scenarios. By confirming the correlation (more than 0.96) and the efficiency coefficient of the model (more than 0.82), the trend of temperature values using modified Mann-Kendall test and temperature concentration index (TCI) values in the sub-basins of Zayanderood Dam, Iran was estimated. The results indicated a non-significant upward trend in the base period (1984–2015) and a significant increasing trend at the level of 5% in the future period (2015–2100) produced by the mentioned scenarios. According to the slope of the trend line, an increase of 1.45, 4 and 9.8 degrees Celsius is predicted during the period of 2015–2100 according to the SSP126, SSP245 and SSP585 scenarios, respectively. The evaluation of changes in TCI values in the studied area showed that in the future period, the distribution of rainfall patterns will be regular and the uniformity of temperature distribution in the SSP585 scenario is more than in the other two scenarios. The results of the temperature pattern distribution in the study area showed that according to the upcoming climate changes and under the studied scenarios, it is expected that while the study area is warming in the future, the uniformity of the temperature distribution will also appear in the months of the year. This shows the reduction of temperature fluctuations and the uniformity of the average temperature in the months of the year. The reduction of TCI values shows the equalization of average temperature changes in the seasons. The results of the investigations showed that the combination of climate change scenarios with the TCI can well show the concentration and distribution of the temperature in different periods.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026524000228","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, temperature changes and its concentration distribution in the period of 1984–2015 and 2015–2100 were investigated under CanESM5 climate model and SSP126, SSP245 and SSP585 scenarios. By confirming the correlation (more than 0.96) and the efficiency coefficient of the model (more than 0.82), the trend of temperature values using modified Mann-Kendall test and temperature concentration index (TCI) values in the sub-basins of Zayanderood Dam, Iran was estimated. The results indicated a non-significant upward trend in the base period (1984–2015) and a significant increasing trend at the level of 5% in the future period (2015–2100) produced by the mentioned scenarios. According to the slope of the trend line, an increase of 1.45, 4 and 9.8 degrees Celsius is predicted during the period of 2015–2100 according to the SSP126, SSP245 and SSP585 scenarios, respectively. The evaluation of changes in TCI values in the studied area showed that in the future period, the distribution of rainfall patterns will be regular and the uniformity of temperature distribution in the SSP585 scenario is more than in the other two scenarios. The results of the temperature pattern distribution in the study area showed that according to the upcoming climate changes and under the studied scenarios, it is expected that while the study area is warming in the future, the uniformity of the temperature distribution will also appear in the months of the year. This shows the reduction of temperature fluctuations and the uniformity of the average temperature in the months of the year. The reduction of TCI values shows the equalization of average temperature changes in the seasons. The results of the investigations showed that the combination of climate change scenarios with the TCI can well show the concentration and distribution of the temperature in different periods.
期刊介绍:
Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate.
Authors are invited to submit articles, short contributions or scholarly reviews in the following areas:
•Dynamic meteorology
•Physical oceanography
•Geophysical fluid dynamics
•Climate variability and climate change
•Atmosphere-ocean-biosphere-cryosphere interactions
•Prediction and predictability
•Scale interactions
Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.