Electromagnetic Biology and Medicine最新文献

筛选
英文 中文
The influence of microwave ablation parameters on the positioning of trocar in different cancerous tissues: a numerical study. 微波消融参数对不同癌组织套管定位的影响:数值研究。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2024-04-02 Epub Date: 2024-03-27 DOI: 10.1080/15368378.2024.2333802
Vellavalapalli Satish, Ramjee Repaka
{"title":"The influence of microwave ablation parameters on the positioning of trocar in different cancerous tissues: a numerical study.","authors":"Vellavalapalli Satish, Ramjee Repaka","doi":"10.1080/15368378.2024.2333802","DOIUrl":"10.1080/15368378.2024.2333802","url":null,"abstract":"<p><p>The present study analyzed the microwave ablation of cancerous tumors located in six major cancer-prone organs and estimated the significance of input power and treatment time parameters in the apt positioning of the trocar into the tissue during microwave ablation. The present study has considered a three-dimensional two-compartment tumour-embedded tissue model. FEA based COMSOL Multiphysics software with inbuilt bioheat transfer, electromagnetic waves, heat transfer in solids and fluids, and laminar flow physics has been used to obtain the numerical results. Based on the mortality rates caused by cancer, the present study has considered six major organs affected by cancer, viz. lung, breast, stomach/gastric, liver, liver (with colon metastasis), and kidney for MWA analysis. The input power (100 W) and ablation times (4 minutes) with apt and inapt positioning of the trocar have been considered to compare the ablation volume of various cancerous tissues. The present study addresses one of the major problems clinicians face, i.e. the proper placement of the trocar due to poor imaging techniques and human error, resulting in incomplete tumor ablation and increased surgical procedures. The highest values of the ablation region have been observed for the liver, colon metastatic liver and breast cancerous tissues compared with other organs at the same operating conditions.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"125-134"},"PeriodicalIF":1.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-attention-based generative adversarial network optimized with color harmony algorithm for brain tumor classification. 基于自我注意的生成对抗网络,利用色彩和谐算法优化脑肿瘤分类。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2024-04-02 Epub Date: 2024-02-18 DOI: 10.1080/15368378.2024.2312363
Senthil Pandi S, Senthilselvi A, Kumaragurubaran T, Dhanasekaran S
{"title":"Self-attention-based generative adversarial network optimized with color harmony algorithm for brain tumor classification.","authors":"Senthil Pandi S, Senthilselvi A, Kumaragurubaran T, Dhanasekaran S","doi":"10.1080/15368378.2024.2312363","DOIUrl":"10.1080/15368378.2024.2312363","url":null,"abstract":"<p><p>This paper proposes a novel approach, BTC-SAGAN-CHA-MRI, for the classification of brain tumors using a SAGAN optimized with a Color Harmony Algorithm. Brain cancer, with its high fatality rate worldwide, especially in the case of brain tumors, necessitates more accurate and efficient classification methods. While existing deep learning approaches for brain tumor classification have been suggested, they often lack precision and require substantial computational time.The proposed method begins by gathering input brain MR images from the BRATS dataset, followed by a pre-processing step using a Mean Curvature Flow-based approach to eliminate noise. The pre-processed images then undergo the Improved Non-Sub sampled Shearlet Transform (INSST) for extracting radiomic features. These features are fed into the SAGAN, which is optimized with a Color Harmony Algorithm to categorize the brain images into different tumor types, including Gliomas, Meningioma, and Pituitary tumors. This innovative approach shows promise in enhancing the precision and efficiency of brain tumor classification, holding potential for improved diagnostic outcomes in the field of medical imaging. The accuracy acquired for the brain tumor identification from the proposed method is 99.29%. The proposed BTC-SAGAN-CHA-MRI technique achieves 18.29%, 14.09% and 7.34% higher accuracy and 67.92%,54.04%, and 59.08% less Computation Time when analyzed to the existing models, like Brain tumor diagnosis utilizing deep learning convolutional neural network with transfer learning approach (BTC-KNN-SVM-MRI); M3BTCNet: multi model brain tumor categorization under metaheuristic deep neural network features optimization (BTC-CNN-DEMFOA-MRI), and efficient method depending upon hierarchical deep learning neural network classifier for brain tumour categorization (BTC-Hie DNN-MRI) respectively.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"31-45"},"PeriodicalIF":1.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protective effects of pulsed electromagnetic field therapy attenuates autophagy and apoptosis in osteoporotic osteoarthritis model rats by activating PPARγ. 脉冲电磁场疗法的保护作用通过激活 PPARγ 减轻骨质疏松性骨关节炎模型大鼠的自噬和细胞凋亡。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2024-04-02 Epub Date: 2024-02-12 DOI: 10.1080/15368378.2024.2314108
Jing Liu, Jun Zhou, Xiarong Huang, Linwei Yin, Long Zhou, Yang Liao, Guanghua Sun, Peirui Zhong, Xinke Peng, Zhilu Sun
{"title":"Protective effects of pulsed electromagnetic field therapy attenuates autophagy and apoptosis in osteoporotic osteoarthritis model rats by activating PPARγ.","authors":"Jing Liu, Jun Zhou, Xiarong Huang, Linwei Yin, Long Zhou, Yang Liao, Guanghua Sun, Peirui Zhong, Xinke Peng, Zhilu Sun","doi":"10.1080/15368378.2024.2314108","DOIUrl":"10.1080/15368378.2024.2314108","url":null,"abstract":"<p><p>Osteoporotic osteoarthritis (OPOA) is a specific phenotype of OA with high incidence and severe cartilage damage. This study aimed to explore the protective efficacy of PEMF on the progression of OPOA and observed the effects of PEMF on PPARγ, autophagy- and apoptosis-related proteins in OPOA rats. Rats were randomly divided into three groups: control group, OPOA group, and PEMF group (<i>n</i> = 6). One week after surgery, the rats in PEMF group were subjected to PEMF (3.82 mT, 8 Hz, 40 min/day and 5 day/week) for 12 weeks. Results showed that PEMF retarded cartilage degeneration and bone loss, as evidenced by pathological staining image, decreased MMP-13 expression and increased bone mineral density. PEMF inhibited the serum levels of inflammatory cytokines, and the expressions of caspase-3 and caspase-8, while upregulated the expression of PPARγ. Moreover, PEMF significantly improved the autophagy disorders, represented by decrease expressions of Beclin-1, P62, and LC3B. The research demonstrates that PEMF can effectively prevent cartilage and subchondral bone destruction in OPOA rats. The potential mechanism may be related to upregulation of PPARγ, inhibition of chondrocyte apoptosis and inflammation, and improvement of autophagy disorder. PEMF therapy thus shows promising application prospects in the treatment of postmenopausal OA.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"61-70"},"PeriodicalIF":1.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139724847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The prevention effect of pulsed electromagnetic fields treatment on senile osteoporosis in vivo via improving the inflammatory bone microenvironment. 脉冲电磁场治疗通过改善炎性骨微环境对老年性骨质疏松症的预防作用
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2024-04-02 Epub Date: 2024-02-08 DOI: 10.1080/15368378.2024.2314093
Jun Zhou, Feiyang Jia, Mengjian Qu, Pengyun Ning, Xiarong Huang, Lu Tan, Danni Liu, Peirui Zhong, Qi Wu
{"title":"The prevention effect of pulsed electromagnetic fields treatment on senile osteoporosis in vivo via improving the inflammatory bone microenvironment.","authors":"Jun Zhou, Feiyang Jia, Mengjian Qu, Pengyun Ning, Xiarong Huang, Lu Tan, Danni Liu, Peirui Zhong, Qi Wu","doi":"10.1080/15368378.2024.2314093","DOIUrl":"10.1080/15368378.2024.2314093","url":null,"abstract":"<p><p>This study aimed to assess PEMF in a rat model of senile osteoporosis and its relationship with NLRP3-mediated low-grade inflammation in the bone marrow microenvironment. A total of 24 Sprague Dawley (SD) rats were included in this study. Sixteen of them were 24-month natural-aged male SD rats, which were randomly distributed into the Aged group and the PEMF group (<i>n</i> = 8 per group). The remaining 8 3-month -old rats were used as the Young positive control group (<i>n</i> = 8). Rats in the PEMF group received 12 weeks of PEMF with 40 min/day, five days per week, while the other rats received placebo PEMF intervention. Bone mineral density/microarchitecture, serum levels of CTX-1 and P1CP, and NLRP3-related signaling genes and proteins in rat bone marrow were then analyzed. The 12-week of PEMF showed significant mitigation of aging-induced bone loss and bone microarchitecture deterioration, i.e. PEMF increased the bone mineral density of the proximal femur and L5 vertebral body and improved parameters of the proximal tibia and L4 vertebral body. Further analysis showed that PEMF reversed aging-induced bone turnover, specifically, decreased serum CTX-1 and elevated serum P1CP. Furthermore, PEMF also dramatically inhibited NLRP3-mediated low-grade inflammation in the bone marrow, i.e. PEMF inhibited the levels of NLRP3, proCaspase1, cleaved Caspase1, IL-1β, and GSDMD-N. The study demonstrated that PEMF could mitigate the aging-induced bone loss and reverses the deterioration of bone microarchitecture probably through inhibiting NLRP3-mediated low-grade chronic inflammation to improve the inflammatory bone microenvironment in aged rats.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"46-60"},"PeriodicalIF":1.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolutionary gravitational neocognitron neural network optimized with marine predators optimization algorithm for MRI brain tumor classification 用海洋捕食者优化算法优化的进化引力新认知神经网络用于核磁共振成像脑肿瘤分类
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2024-01-13 DOI: 10.1080/15368378.2024.2301952
A. Lakshmi, Manjunathan Alagarsamy, A. Anbarasa Pandian, Dinesh Paramathi Mani
{"title":"Evolutionary gravitational neocognitron neural network optimized with marine predators optimization algorithm for MRI brain tumor classification","authors":"A. Lakshmi, Manjunathan Alagarsamy, A. Anbarasa Pandian, Dinesh Paramathi Mani","doi":"10.1080/15368378.2024.2301952","DOIUrl":"https://doi.org/10.1080/15368378.2024.2301952","url":null,"abstract":"Magnetic resonance imaging (MRI) is a powerful tool for tumor diagnosis in human brain. Here, the MRI images are considered to detect the brain tumor and classify the regions as meningioma, glioma,...","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"12 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139461879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal damage map prediction during irreversible electroporation with U-Net 利用 U-Net 预测不可逆电穿孔过程中的热损伤图
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2023-12-29 DOI: 10.1080/15368378.2023.2299212
Amir Khorasani
{"title":"Thermal damage map prediction during irreversible electroporation with U-Net","authors":"Amir Khorasani","doi":"10.1080/15368378.2023.2299212","DOIUrl":"https://doi.org/10.1080/15368378.2023.2299212","url":null,"abstract":"Recent developments in cancer treatment with irreversible electroporation (IRE) have led to a renewed interest in developing a treatment planning system based on Deep-Learning methods. This paper w...","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"95 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139066767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metamaterial based AMC backed archimedean spiral antenna for in-vitro microwave hyperthermia of skin cancer 用于皮肤癌体外微波热疗的基于超材料的 AMC 背靠式阿基米德螺旋天线
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2023-12-29 DOI: 10.1080/15368378.2023.2297954
Komalpreet Kaur, Amanpreet Kaur
{"title":"Metamaterial based AMC backed archimedean spiral antenna for in-vitro microwave hyperthermia of skin cancer","authors":"Komalpreet Kaur, Amanpreet Kaur","doi":"10.1080/15368378.2023.2297954","DOIUrl":"https://doi.org/10.1080/15368378.2023.2297954","url":null,"abstract":"This research article presents a study that uses microwave frequencies (ISM band) for treatment of skin cancer by heating the malignant cells on skin with a Microwave Hyperthermia (MWHT) applicator...","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"33 4 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139066821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shortwave radiation-induced reproductive organ damage in male rats by enhanced expression of molecules associated with the calpain/Cdk5 pathway and oxidative stress. 短波辐射通过增强钙蛋白酶/CDK5通路和氧化应激相关分子的表达,诱发雄性大鼠生殖器官损伤。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2023-10-02 Epub Date: 2023-12-29 DOI: 10.1080/15368378.2023.2296896
Binwei Yao, Junqi Men, Shuchen Liu, Yanxin Bai, Chao Yu, Yabing Gao, Xinping Xu, Li Zhao, Jing Zhang, Hui Wang, Yanyang Li, Ruiyun Peng
{"title":"Shortwave radiation-induced reproductive organ damage in male rats by enhanced expression of molecules associated with the calpain/Cdk5 pathway and oxidative stress.","authors":"Binwei Yao, Junqi Men, Shuchen Liu, Yanxin Bai, Chao Yu, Yabing Gao, Xinping Xu, Li Zhao, Jing Zhang, Hui Wang, Yanyang Li, Ruiyun Peng","doi":"10.1080/15368378.2023.2296896","DOIUrl":"10.1080/15368378.2023.2296896","url":null,"abstract":"<p><p>Shortwave radiation has been reported to have harmful effects on several organs in humans and animals. However, the biological effects of 27 MHz shortwave on the reproductive system are not clear. In this study, we investigated the effects of shortwave whole-body exposure at a frequency of 27 MHz on structural and functional changes in the testis. Male Wistar rats were exposed to 27 MHz continuous shortwaves at average power densities of 0, 5, 10, or 30 mW/cm<sup>2</sup> for 6 min. The levels of insulin-like factor 3 (INSL3) and anti-sperm antibodies (AsAb) in the peripheral serum, sperm motility, sperm malformation rate, and testicular tissue structure of rats were analyzed. Furthermore, the activity of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) content, calpain, and Cdk5 expression were analyzed at 1, 7, 14, and 28 days after exposure. We observed that the rats after radiation had decreased serum INSL3 levels (<i>p</i> < 0.01), increased AsAb levels (<i>p</i> < 0.05), decreased percentage of class A+B sperm (<i>p</i> < 0.01 or <i>p</i> < 0.05), increased sperm malformation (<i>p</i> < 0.01 or <i>p</i> < 0.05), injured testicular tissue structure, decreased SOD and CAT activities (<i>p</i> < 0.01 or <i>p</i> < 0.05), increased MDA content (<i>p</i> < 0.01), and testicular tissue expressions of calpain1, calpain2, and Cdk5 were increased (<i>p</i> < 0.01 or <i>p</i> < 0.05). In conclusion, Shortwave radiation caused functional and structural damage to the reproductive organs of male rats. Furthermore, oxidative stress and key molecules in the calpain/Cdk5 pathway are likely involved in this process.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"150-162"},"PeriodicalIF":1.7,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The protective role of 5-hydroxy-1,4-naphthoquinone against the harmful effects of 50 Hz electric field in rat lung tissue. 5-羟基-1,4-萘醌对50Hz电场对大鼠肺组织损伤的保护作用。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2023-10-02 Epub Date: 2023-12-29 DOI: 10.1080/15368378.2023.2265935
Nurgül Şenol, Melda Şahin, Uğur Şahin
{"title":"The protective role of 5-hydroxy-1,4-naphthoquinone against the harmful effects of 50 Hz electric field in rat lung tissue.","authors":"Nurgül Şenol, Melda Şahin, Uğur Şahin","doi":"10.1080/15368378.2023.2265935","DOIUrl":"10.1080/15368378.2023.2265935","url":null,"abstract":"<p><p>There is strong scientific evidence that the electric field is harmful to life. Exposure to an electric field (EF) can cause lung toxicity and respiratory disorders. In addition, the electric field has been shown to cause tissue damage through inflammation and apoptosis. Juglone (JUG) is one of the powerful antioxidants with anti-apoptotic and anti-inflammatory, various pharmacological properties in the biological system. In this study, we evaluated the efficacy of JUG against the potential adverse effects of electric field on the lung. Twenty-four Wistar albino rats were randomly divided into three groups; control group (Cont), EF group, and EF exposure+JUG-treated group (EJUG). After routine histological procedures, sections stained with hematoxylin-eosin (H&E) showed significant changes in lung tissues in the EF group compared to the Cont group. Significant protective effects were observed in the building volumes and histopathology in the EJUG group. Our immunohistochemical and gene expression results increased the expression of caspase-3 and tumor necrosis factor alpha (TNF-α) in the EF group (<i>p</i> < 0.05). Juglon increased cytokine signal suppressor (SOCS) expression (<i>p</i> < 0.001). These findings were consistent with the antioxidant effect of JUG treatment. We reasoned that exposure to EF damaged rat lung tissues and administration of JUG alleviated the complications caused by 50 Hz EF.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"133-143"},"PeriodicalIF":1.7,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41174750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Four minutes of capacitive and resistive electric transfer therapy increased jump performance. 四分钟的容性和电阻性电转移治疗提高了跳跃性能。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2023-10-02 Epub Date: 2023-12-29 DOI: 10.1080/15368378.2023.2290742
Michio Wachi, Takumi Jiroumaru, Ayako Satonaka, Masae Ikeya, Nobuko Shichiri, Junko Ochi, Yutaro Hyodo, Takamitsu Fujikawa
{"title":"Four minutes of capacitive and resistive electric transfer therapy increased jump performance.","authors":"Michio Wachi, Takumi Jiroumaru, Ayako Satonaka, Masae Ikeya, Nobuko Shichiri, Junko Ochi, Yutaro Hyodo, Takamitsu Fujikawa","doi":"10.1080/15368378.2023.2290742","DOIUrl":"10.1080/15368378.2023.2290742","url":null,"abstract":"<p><p>Capacitive and resistive electric transfer (CRET) therapy can improve flexibility and increase muscle activity and may be useful as a warm-up technique. This study examined the effects of short-time CRET on jump performance. Thirty healthy men (age range, 20-40 years) were randomly divided into passive (<i>n</i> = 15) and active (<i>n</i> = 15) warm-up groups. The participants and statisticians were blinded to the participant allocation. The passive warm-up group underwent 4 min of CRET therapy on their posterior lower legs. The active warm-up group performed stretching and jogging for 4 min. Calf muscle temperature and rebound jump (RJ) index were measured before and after the intervention. The mean (± standard deviation) muscle temperature increased by 2.0 ± 0.5°C and 1.4 ± 0.6°C in the passive and active warm-up groups, respectively (<i>p</i> < 0.05). RJ index increased significantly in both groups (<i>p</i> < 0.05). Therefore, passive warm-up using CRET may help avoid energy loss while increasing the muscle temperature in a short time when compared with traditional active warm-up techniques.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"144-149"},"PeriodicalIF":1.7,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138500000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信