Electronic Journal of Qualitative Theory of Differential Equations最新文献

筛选
英文 中文
Cauchy problem for nonlocal diffusion equations modelling Lévy flights 模拟lims飞行的非局部扩散方程的Cauchy问题
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2022-01-01 DOI: 10.14232/ejqtde.2022.1.18
Chung‐Sik Sin
{"title":"Cauchy problem for nonlocal diffusion equations modelling Lévy flights","authors":"Chung‐Sik Sin","doi":"10.14232/ejqtde.2022.1.18","DOIUrl":"https://doi.org/10.14232/ejqtde.2022.1.18","url":null,"abstract":"In the present paper, we study the time-space fractional diffusion equation involving the Caputo differential operator and the fractional Laplacian. This equation describes the Lévy flight with the Brownian motion component and the drift component. First, the asymptotic behavior of the fundamental solution of the fractional diffusion equation is considered. Then, we use the fundamental solution to obtain the representation formula of solutions of the Cauchy problem. In the last, the L 2 -decay estimates for solutions are proved by employing the Fourier analysis technique.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66583779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The existence of solutions for the modified ( p ( x ) 修正后的(p (x)</mml:mo
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2022-01-01 DOI: 10.14232/ejqtde.2022.1.39
G. Figueiredo, C. Vetro
{"title":"The existence of solutions for the modified ( p ( x )","authors":"G. Figueiredo, C. Vetro","doi":"10.14232/ejqtde.2022.1.39","DOIUrl":"https://doi.org/10.14232/ejqtde.2022.1.39","url":null,"abstract":"<jats:p>We consider the Dirichlet problem <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mo>−<!-- − --></mml:mo> <mml:msubsup> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>p</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:msubsup> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>q</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:mrow> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mspace width=\"1em\" /> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mtext>in </mml:mtext> </mml:mstyle> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mo>,</mml:mo> <mml:mspace width=\"1em\" /> <mml:mi>u</mml:mi> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">|</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> </mml:math> driven by the sum of a <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>p</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math>-Laplacian operator and of a <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>q</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math>-Laplacian operator, both of them weighted by indefinite (sign-changing) Kirchhoff type","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66585480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Attractivity of solutions of Riemann–Liouville fractional differential equations Riemann-Liouville分数阶微分方程解的吸引性
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2022-01-01 DOI: 10.14232/ejqtde.2022.1.52
Equations Tao Zhu
{"title":"Attractivity of solutions of Riemann–Liouville fractional\u0000 differential equations","authors":"\t\tEquations\t\t\tTao Zhu","doi":"10.14232/ejqtde.2022.1.52","DOIUrl":"https://doi.org/10.14232/ejqtde.2022.1.52","url":null,"abstract":"Some new weakly singular integral inequalities are established by a new method, which generalize some results of this type in some previous papers. By these new integral inequalities, we present the attractivity of solutions for Riemann–Liouville fractional differential equations. Finally, several examples are given to illustrate our main results.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74630761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Stability results for the functional differential equations associated to water hammer in hydraulics 水力学中与水锤相关的泛函微分方程的稳定性结果
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2022-01-01 DOI: 10.14232/ejqtde.2022.1.19
V. Răsvan
{"title":"Stability results for the functional differential equations associated to water hammer in hydraulics","authors":"V. Răsvan","doi":"10.14232/ejqtde.2022.1.19","DOIUrl":"https://doi.org/10.14232/ejqtde.2022.1.19","url":null,"abstract":"There is considered a system of two sets of partial differential equations describing the water hammer in a hydroelectric power plant containing the dynamics of the tunnel, turbine penstock, surge tank and hydraulic turbine. Under standard simplifying assumptions (negligible Darcy–Weisbach losses and dynamic head variations), a system of functional differential equations of neutral type, with two delays, can be associated to the aforementioned partial differential equations and existence, uniqueness and continuous data dependence can be established. Stability is then discussed using a Lyapunov functional deduced from the energy identity. The Lyapunov functional is \"weak\" i.e. its derivative function is only non-positive definite. Therefore only Lyapunov stability is obtained while for asymptotic stability application of the Barbashin–Krasovskii–LaSalle invariance principle is required. A necessary condition for its validity is the asymptotic stability of the difference operator associated to the neutral system. However, its properties in the given case make the asymptotic stability non-robust (fragile) in function of some arithmetic properties of the delay ratio.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66583906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Expansion of positivity to a class of doubly nonlinear parabolic equations 一类双非线性抛物型方程正性的展开式
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2022-01-01 DOI: 10.14232/ejqtde.2022.1.15
E. Henriques
{"title":"Expansion of positivity to a class of doubly nonlinear parabolic equations","authors":"E. Henriques","doi":"10.14232/ejqtde.2022.1.15","DOIUrl":"https://doi.org/10.14232/ejqtde.2022.1.15","url":null,"abstract":"<jats:p>We establish the expansion of positivity of the nonnegative, local, weak solutions to the class of doubly nonlinear parabolic equations <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:msub> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi>div</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>D</mml:mi> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mi>D</mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mspace width=\"2em\" /> <mml:mtext> </mml:mtext> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> <mml:mtext> </mml:mtext> <mml:mtext>and</mml:mtext> <mml:mtext> </mml:mtext> <mml:mi>q</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> considering separately the two possible cases <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>q</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>q</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mi>p</mml:mi> <mml:mo><</mml:mo> <mml:mn>0</mml:mn> </mml:math>. The proof relies on the procedure presented by DiBenedetto, Gianazza and Vespri for both the degenerate and the singular parabolic <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>p</mml:mi> </mml:math>-Laplacian equation.</jats:p>","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66583986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Global phase portraits of a predator–prey system 捕食者-猎物系统的全局相位图
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2022-01-01 DOI: 10.14232/ejqtde.2022.1.16
Érika Diz-Pita, J. Llibre, M. V. Otero-Espinar
{"title":"Global phase portraits of a predator–prey system","authors":"Érika Diz-Pita, J. Llibre, M. V. Otero-Espinar","doi":"10.14232/ejqtde.2022.1.16","DOIUrl":"https://doi.org/10.14232/ejqtde.2022.1.16","url":null,"abstract":"We classify the global dynamics of a family of Kolmogorov systems depending on three parameters which has ecological meaning as it modelizes a predator–prey system. We obtain all their topologically distinct global phase portraits in the positive quadrant of the Poincaré disc, so we provide all the possible distinct dynamics of these systems.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66584063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On some differential equations involving a new kind of variable exponents 关于一类新的变指数微分方程
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2022-01-01 DOI: 10.14232/ejqtde.2022.1.23
S. Aouaoui
{"title":"On some differential equations involving a new kind of variable exponents","authors":"S. Aouaoui","doi":"10.14232/ejqtde.2022.1.23","DOIUrl":"https://doi.org/10.14232/ejqtde.2022.1.23","url":null,"abstract":"In this paper, we are concerned with some new first order differential equation defined on the whole real axis R . The principal part of the equation involves an operator with variable exponent p depending on the variable x ∈ R through the unknown solution while the nonlinear part involves the classical variable exponent p ( x ) . Such kind of situation is very related to the presence of the variable exponent and has not been treated before. Our existence result of nontrivial solution cannot be reached using standard variational or topological methods of nonlinear analysis and some sophisticated arguments have to be employed.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66584300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Lyapunov functionals and practical stability for stochastic differential delay equations with general decay rate 具有一般衰减率的随机微分时滞方程的Lyapunov泛函与实际稳定性
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2022-01-01 DOI: 10.14232/ejqtde.2022.1.60
Equations T. Caraballo, Faten Ezzine, M. Hammami
{"title":"Lyapunov functionals and practical stability for stochastic\u0000 differential delay equations with general decay rate","authors":"\t\tEquations\t\t\tT. Caraballo, Faten Ezzine, M. Hammami","doi":"10.14232/ejqtde.2022.1.60","DOIUrl":"https://doi.org/10.14232/ejqtde.2022.1.60","url":null,"abstract":"This paper stands for the almost sure practical stability of nonlinear stochastic differential delay equations (SDDEs) with a general decay rate. We establish some sufficient conditions based upon the construction of appropriate Lyapunov functionals. Furthermore, we provide some numerical examples to validate the effectiveness of the abstract results of this paper.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79694608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Random invariant manifolds and foliations for slow-fast PDEs with strong multiplicative noise 具有强乘噪声的慢-快偏微分方程的随机不变流形和叶状
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2022-01-01 DOI: 10.14232/ejqtde.2022.1.70
Equations Wenlei Li, Shiduo Qu, S. Shi
{"title":"Random invariant manifolds and foliations for slow-fast PDEs with\u0000 strong multiplicative noise","authors":"\t\tEquations\t\t\tWenlei Li, Shiduo Qu, S. Shi","doi":"10.14232/ejqtde.2022.1.70","DOIUrl":"https://doi.org/10.14232/ejqtde.2022.1.70","url":null,"abstract":"This article is devoted to the dynamical behaviors of a class of slow-fast PDEs perturbed by strong multiplicative noise. We will accomplish the existence of random invariant manifolds and foliations, and show exponential tracking property of them. Moreover, the asymptotic approximation for both objects will be presented.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80910638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic behaviour of solutions of quasilinear differential-algebraic equations 拟线性微分代数方程解的渐近性质
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2022-01-01 DOI: 10.14232/ejqtde.2022.1.43
Equations V. H. Linh, N. Nga, N. Tuan
{"title":"Asymptotic behaviour of solutions of quasilinear\u0000 differential-algebraic equations","authors":"\t\tEquations\t\t\tV. H. Linh, N. Nga, N. Tuan","doi":"10.14232/ejqtde.2022.1.43","DOIUrl":"https://doi.org/10.14232/ejqtde.2022.1.43","url":null,"abstract":"This paper is concerned with the asymptotic behavior of solutions of linear differential-algebraic equations (DAEs) under small nonlinear perturbations. Some results on the asymptotic behavior of solutions which are well known for ordinary differential equations are extended to DAEs. The main tools are the projector-based decoupling and the contractive mapping principle. Under certain assumptions on the linear part and the nonlinear term, asymptotic behavior of solutions are characterized. As the main result, a Perron type theorem that establishes the exponential growth rate of solutions is formulated.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88191435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信