Asymptotic behaviour of solutions of quasilinear differential-algebraic equations

IF 1.1 4区 数学 Q1 MATHEMATICS
Equations V. H. Linh, N. Nga, N. Tuan
{"title":"Asymptotic behaviour of solutions of quasilinear\n differential-algebraic equations","authors":"\t\tEquations\t\t\tV. H. Linh, N. Nga, N. Tuan","doi":"10.14232/ejqtde.2022.1.43","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the asymptotic behavior of solutions of linear differential-algebraic equations (DAEs) under small nonlinear perturbations. Some results on the asymptotic behavior of solutions which are well known for ordinary differential equations are extended to DAEs. The main tools are the projector-based decoupling and the contractive mapping principle. Under certain assumptions on the linear part and the nonlinear term, asymptotic behavior of solutions are characterized. As the main result, a Perron type theorem that establishes the exponential growth rate of solutions is formulated.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"16 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.43","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the asymptotic behavior of solutions of linear differential-algebraic equations (DAEs) under small nonlinear perturbations. Some results on the asymptotic behavior of solutions which are well known for ordinary differential equations are extended to DAEs. The main tools are the projector-based decoupling and the contractive mapping principle. Under certain assumptions on the linear part and the nonlinear term, asymptotic behavior of solutions are characterized. As the main result, a Perron type theorem that establishes the exponential growth rate of solutions is formulated.
拟线性微分代数方程解的渐近性质
研究了小非线性扰动下线性微分代数方程解的渐近性质。将常微分方程解的渐近性的一些结果推广到DAEs。主要的工具是基于投影的解耦和压缩映射原理。在一定的线性部分和非线性项的假设下,刻画了解的渐近行为。作为主要结果,给出了建立解的指数增长率的Perron型定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信