模拟lims飞行的非局部扩散方程的Cauchy问题

IF 1.1 4区 数学 Q1 MATHEMATICS
Chung‐Sik Sin
{"title":"模拟lims飞行的非局部扩散方程的Cauchy问题","authors":"Chung‐Sik Sin","doi":"10.14232/ejqtde.2022.1.18","DOIUrl":null,"url":null,"abstract":"In the present paper, we study the time-space fractional diffusion equation involving the Caputo differential operator and the fractional Laplacian. This equation describes the Lévy flight with the Brownian motion component and the drift component. First, the asymptotic behavior of the fundamental solution of the fractional diffusion equation is considered. Then, we use the fundamental solution to obtain the representation formula of solutions of the Cauchy problem. In the last, the L 2 -decay estimates for solutions are proved by employing the Fourier analysis technique.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cauchy problem for nonlocal diffusion equations modelling Lévy flights\",\"authors\":\"Chung‐Sik Sin\",\"doi\":\"10.14232/ejqtde.2022.1.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we study the time-space fractional diffusion equation involving the Caputo differential operator and the fractional Laplacian. This equation describes the Lévy flight with the Brownian motion component and the drift component. First, the asymptotic behavior of the fundamental solution of the fractional diffusion equation is considered. Then, we use the fundamental solution to obtain the representation formula of solutions of the Cauchy problem. In the last, the L 2 -decay estimates for solutions are proved by employing the Fourier analysis technique.\",\"PeriodicalId\":50537,\"journal\":{\"name\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/ejqtde.2022.1.18\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.18","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了包含Caputo微分算子和分数阶拉普拉斯算子的时空分数阶扩散方程。这个方程描述了带有布朗运动分量和漂移分量的lcv飞行。首先,考虑了分数阶扩散方程基本解的渐近性质。然后,利用基本解得到柯西问题解的表示公式。最后,利用傅里叶分析技术证明了解的l2衰减估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cauchy problem for nonlocal diffusion equations modelling Lévy flights
In the present paper, we study the time-space fractional diffusion equation involving the Caputo differential operator and the fractional Laplacian. This equation describes the Lévy flight with the Brownian motion component and the drift component. First, the asymptotic behavior of the fundamental solution of the fractional diffusion equation is considered. Then, we use the fundamental solution to obtain the representation formula of solutions of the Cauchy problem. In the last, the L 2 -decay estimates for solutions are proved by employing the Fourier analysis technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信