{"title":"修正后的(p (x)</mml:mo","authors":"G. Figueiredo, C. Vetro","doi":"10.14232/ejqtde.2022.1.39","DOIUrl":null,"url":null,"abstract":"<jats:p>We consider the Dirichlet problem <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mo>−<!-- − --></mml:mo> <mml:msubsup> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>p</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:msubsup> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>q</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:mrow> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mspace width=\"1em\" /> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mtext>in </mml:mtext> </mml:mstyle> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mo>,</mml:mo> <mml:mspace width=\"1em\" /> <mml:mi>u</mml:mi> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">|</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> </mml:math> driven by the sum of a <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>p</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math>-Laplacian operator and of a <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>q</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math>-Laplacian operator, both of them weighted by indefinite (sign-changing) Kirchhoff type terms. We establish the existence of weak solution and strong generalized solution, using topological tools (properties of Galerkin basis and of Nemitsky map). In the particular case of a positive Kirchhoff term, we obtain the existence of weak solution (<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>=</mml:mo> </mml:math> strong generalized solution), using the properties of pseudomonotone operators.</jats:p>","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The existence of solutions for the modified ( p ( x )\",\"authors\":\"G. Figueiredo, C. Vetro\",\"doi\":\"10.14232/ejqtde.2022.1.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>We consider the Dirichlet problem <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <mml:mo>−<!-- − --></mml:mo> <mml:msubsup> <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>p</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:msubsup> <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>q</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:mrow> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mspace width=\\\"1em\\\" /> <mml:mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"> <mml:mtext>in </mml:mtext> </mml:mstyle> <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi> <mml:mo>,</mml:mo> <mml:mspace width=\\\"1em\\\" /> <mml:mi>u</mml:mi> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">|</mml:mo> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">∂<!-- ∂ --></mml:mi> <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> </mml:math> driven by the sum of a <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>p</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math>-Laplacian operator and of a <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>q</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math>-Laplacian operator, both of them weighted by indefinite (sign-changing) Kirchhoff type terms. We establish the existence of weak solution and strong generalized solution, using topological tools (properties of Galerkin basis and of Nemitsky map). In the particular case of a positive Kirchhoff term, we obtain the existence of weak solution (<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mo>=</mml:mo> </mml:math> strong generalized solution), using the properties of pseudomonotone operators.</jats:p>\",\"PeriodicalId\":50537,\"journal\":{\"name\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/ejqtde.2022.1.39\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.39","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
我们考虑Dirichlet问题- Δ p (x) kp u (x)- Δ q (x) K q u (x) = f (x, u (x),∇u (x)) in Ω, u |∂Ω = 0,由p (x)-拉普拉斯算子和q (x)-拉普拉斯算子的和驱动,它们都被不定的(改变符号的)基尔霍夫型项加权。利用拓扑工具(Galerkin基的性质和Nemitsky映射的性质)建立了弱解和强广义解的存在性。在正Kirchhoff项的特殊情况下,利用伪单调算子的性质,得到了弱解(=强广义解)的存在性。
The existence of solutions for the modified ( p ( x )
We consider the Dirichlet problem −Δp(x)Kpu(x)−Δq(x)Kqu(x)=f(x,u(x),∇u(x))in Ω,u|∂Ω=0, driven by the sum of a p(x)-Laplacian operator and of a q(x)-Laplacian operator, both of them weighted by indefinite (sign-changing) Kirchhoff type terms. We establish the existence of weak solution and strong generalized solution, using topological tools (properties of Galerkin basis and of Nemitsky map). In the particular case of a positive Kirchhoff term, we obtain the existence of weak solution (= strong generalized solution), using the properties of pseudomonotone operators.
期刊介绍:
The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875.
All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.