Expositiones Mathematicae最新文献

筛选
英文 中文
Statistically characterized subgroups related to some non-arithmetic sequence of integers 与非等差整数序列相关的统计特征子群
IF 0.8 4区 数学
Expositiones Mathematicae Pub Date : 2025-01-14 DOI: 10.1016/j.exmath.2025.125653
Pratulananda Das, Ayan Ghosh
{"title":"Statistically characterized subgroups related to some non-arithmetic sequence of integers","authors":"Pratulananda Das,&nbsp;Ayan Ghosh","doi":"10.1016/j.exmath.2025.125653","DOIUrl":"10.1016/j.exmath.2025.125653","url":null,"abstract":"<div><div>Very recently in Das and Ghosh (2024), characterized subgroups have been investigated for some special kind of non-arithmetic sequences where certain cardinality related questions were answered. As statistically characterized subgroups Dikranjan et al. (2020) have evolved as non-trivial generalization of characterized subgroups, it is natural to ask the same questions for these subgroups which we try to answer here. The entire investigation emphasizes that these statistically characterized subgroups are mostly larger in size, having cardinality <span><math><mi>c</mi></math></span>, and exhibit behavior that significantly differs from that of classical characterized subgroups. As a consequence, we are able to present solution of an open problem raised in Dikranjan et al. (2020).</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"43 3","pages":"Article 125653"},"PeriodicalIF":0.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quelques considérations galoisiennes relatives à l’extension des constantes d’un corps de fractions tordu 关于扭曲分数域常数扩展的一些伽罗瓦式考虑
IF 0.8 4区 数学
Expositiones Mathematicae Pub Date : 2025-01-10 DOI: 10.1016/j.exmath.2024.125645
Bruno Deschamps
{"title":"Quelques considérations galoisiennes relatives à l’extension des constantes d’un corps de fractions tordu","authors":"Bruno Deschamps","doi":"10.1016/j.exmath.2024.125645","DOIUrl":"10.1016/j.exmath.2024.125645","url":null,"abstract":"<div><div>In this article, we state several results relating to the arithmetic of a constants extension of a skew fractions field <span><math><mrow><mi>K</mi><mrow><mo>[</mo><mi>t</mi><mo>,</mo><mi>σ</mi><mo>,</mo><mi>δ</mi><mo>]</mo></mrow></mrow></math></span>. As an application, we show a non-commutative version of the Leptin–Waterhouse theorem: for any profinite group <span><math><mi>Γ</mi></math></span>, there exist a skew field <span><math><mi>K</mi></math></span> and an algebraic, outer and Galois extension <span><math><mrow><mi>L</mi><mo>/</mo><mi>K</mi></mrow></math></span> such that <span><math><mrow><mtext>Gal</mtext><mrow><mo>(</mo><mi>L</mi><mo>/</mo><mi>K</mi><mo>)</mo></mrow><mo>≃</mo><mi>Γ</mi></mrow></math></span>.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"43 3","pages":"Article 125645"},"PeriodicalIF":0.8,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An annotated bibliography for comparative prime number theory 比较素数理论的注释书目
IF 0.8 4区 数学
Expositiones Mathematicae Pub Date : 2025-01-01 DOI: 10.1016/j.exmath.2024.125644
Greg Martin, Pu Justin Scarfy Yang, Aram Bahrini, Prajeet Bajpai, Kübra Benli̇, Jenna Downey, Yuan Yuan Li, Xiaoxuan Liang, Amir Parvardi, Reginald Simpson, Ethan Patrick White, Chi Hoi Yip
{"title":"An annotated bibliography for comparative prime number theory","authors":"Greg Martin,&nbsp;Pu Justin Scarfy Yang,&nbsp;Aram Bahrini,&nbsp;Prajeet Bajpai,&nbsp;Kübra Benli̇,&nbsp;Jenna Downey,&nbsp;Yuan Yuan Li,&nbsp;Xiaoxuan Liang,&nbsp;Amir Parvardi,&nbsp;Reginald Simpson,&nbsp;Ethan Patrick White,&nbsp;Chi Hoi Yip","doi":"10.1016/j.exmath.2024.125644","DOIUrl":"10.1016/j.exmath.2024.125644","url":null,"abstract":"<div><div>The goal of this annotated bibliography is to record every publication on the topic of comparative prime number theory together with a summary of its results. We use a unified system of notation for the quantities being studied and for the hypotheses under which results are obtained.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"43 3","pages":"Article 125644"},"PeriodicalIF":0.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143508438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum spheres as graph C*-algebras: A review 作为图C*-代数的量子球:回顾
IF 0.8 4区 数学
Expositiones Mathematicae Pub Date : 2024-12-01 DOI: 10.1016/j.exmath.2024.125632
Francesco D’Andrea
{"title":"Quantum spheres as graph C*-algebras: A review","authors":"Francesco D’Andrea","doi":"10.1016/j.exmath.2024.125632","DOIUrl":"10.1016/j.exmath.2024.125632","url":null,"abstract":"<div><div>In this survey, we discuss the description of Vaksman–Soibelman quantum spheres using graph C*-algebras, following the seminal work of Hong and Szymański. We give a slightly different proof of the isomorphism with a graph C*-algebra, borrowing the idea of Mikkelsen and Kaad of using conditional expectations to prove the desired result.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125632"},"PeriodicalIF":0.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143137735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Blaschke–Lebesgue theorem revisited 重新审视Blaschke-Lebesgue定理
IF 0.8 4区 数学
Expositiones Mathematicae Pub Date : 2024-12-01 DOI: 10.1016/j.exmath.2024.125617
Ryan Hynd
{"title":"The Blaschke–Lebesgue theorem revisited","authors":"Ryan Hynd","doi":"10.1016/j.exmath.2024.125617","DOIUrl":"10.1016/j.exmath.2024.125617","url":null,"abstract":"","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125617"},"PeriodicalIF":0.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143137736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the existence of certain Lehmer numbers modulo a prime 论某些雷默数模数素数的存在性
IF 0.8 4区 数学
Expositiones Mathematicae Pub Date : 2024-11-02 DOI: 10.1016/j.exmath.2024.125628
Bidisha Roy
{"title":"On the existence of certain Lehmer numbers modulo a prime","authors":"Bidisha Roy","doi":"10.1016/j.exmath.2024.125628","DOIUrl":"10.1016/j.exmath.2024.125628","url":null,"abstract":"<div><div>A <em>Lehmer number modulo an odd prime number</em> <span><math><mi>p</mi></math></span> is a residue class <span><math><mrow><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>×</mo></mrow></msubsup></mrow></math></span> whose multiplicative inverse <span><math><mover><mrow><mi>a</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> has opposite parity. Lehmer numbers that are also primitive roots are called <em>Lehmer primitive roots</em>. Analogously, in this article we say that a residue class <span><math><mrow><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>×</mo></mrow></msubsup></mrow></math></span> is a <em>Lehmer non-primitive root modulo</em> <span><math><mi>p</mi></math></span> if <span><math><mi>a</mi></math></span> is Lehmer number modulo <span><math><mi>p</mi></math></span> which is not a primitive root. We provide explicit estimates for the difference between the number of Lehmer non-primitive roots modulo a prime <span><math><mi>p</mi></math></span> and their “expected number”, which is <span><math><mfrac><mrow><mi>p</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>ϕ</mi><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. Similar explicit bounds are also provided for the number of <span><math><mi>k</mi></math></span>-consecutive Lehmer numbers modulo a prime, and <span><math><mi>k</mi></math></span>-consecutive Lehmer primitive roots We also prove that for any prime number <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>3</mn><mo>.</mo><mn>05</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>14</mn></mrow></msup></mrow></math></span>, there exists a Lehmer non-primitive root modulo <span><math><mi>p</mi></math></span>. Moreover, we show that for any positive integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span> (respectively, <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span>) and for all primes <span><math><mrow><mi>p</mi><mo>≥</mo><mo>exp</mo><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> (respectively, <span><math><mrow><mi>p</mi><mo>≥</mo><mo>exp</mo><mrow><mo>(</mo><mn>6</mn><mo>.</mo><mn>8</mn><msup><mrow><mn>7</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>), there exist <span><math><mi>k</mi></math></span> consecutive Lehmer numbers modulo <span><math><mi>p</mi></math></span> (respectively, <span><math><mi>k</mi></math></span> consecutive Lehmer primitive roots modulo <span><math><mi>p</mi></math></span>). For large primes <span><math><mi>p</mi></math></span>, these theorems generalize two results which were proven in a paper by Cohen and Trudgian appeared in the Journal of Number Theory in 2019.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125628"},"PeriodicalIF":0.8,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong Gröbner bases and linear algebra in multivariate polynomial rings over Euclidean domains 欧几里得域上多变量多项式环中的强格罗布纳基和线性代数
IF 0.8 4区 数学
Expositiones Mathematicae Pub Date : 2024-10-30 DOI: 10.1016/j.exmath.2024.125627
Erhard Aichinger
{"title":"Strong Gröbner bases and linear algebra in multivariate polynomial rings over Euclidean domains","authors":"Erhard Aichinger","doi":"10.1016/j.exmath.2024.125627","DOIUrl":"10.1016/j.exmath.2024.125627","url":null,"abstract":"<div><div>We provide a self-contained introduction to Gröbner bases of submodules of <span><math><mrow><mi>R</mi><msup><mrow><mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></mrow></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span>, where <span><math><mi>R</mi></math></span> is a Euclidean domain, and explain how to use these bases to solve linear systems over <span><math><mrow><mi>R</mi><mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125627"},"PeriodicalIF":0.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some remarks on rational right triangles 关于有理直角三角形的一些评论
IF 0.8 4区 数学
Expositiones Mathematicae Pub Date : 2024-10-22 DOI: 10.1016/j.exmath.2024.125623
Jasbir S. Chahal
{"title":"Some remarks on rational right triangles","authors":"Jasbir S. Chahal","doi":"10.1016/j.exmath.2024.125623","DOIUrl":"10.1016/j.exmath.2024.125623","url":null,"abstract":"<div><div>We determine all rational right triangles that tightly enclose the unit circle and the congruent numbers they generate.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125623"},"PeriodicalIF":0.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification of the conjugacy classes of SL˜(2,R) SL˜(2,R) 共轭类的分类
IF 0.8 4区 数学
Expositiones Mathematicae Pub Date : 2024-10-22 DOI: 10.1016/j.exmath.2024.125626
Christian Táfula
{"title":"Classification of the conjugacy classes of SL˜(2,R)","authors":"Christian Táfula","doi":"10.1016/j.exmath.2024.125626","DOIUrl":"10.1016/j.exmath.2024.125626","url":null,"abstract":"<div><div>In this note, we classify the conjugacy classes of <span><math><mrow><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, the universal covering group of <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>. For any non-central element <span><math><mrow><mi>α</mi><mo>∈</mo><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, we show that its conjugacy class may be determined by three invariants: (i) <em>Trace</em>: the trace (valued in the set of positive real numbers <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>) of its image <span><math><mover><mrow><mi>α</mi></mrow><mo>¯</mo></mover></math></span> in <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>; (ii) <em>Direction type</em>: the sign behavior of the induced self-homeomorphism of <span><math><mi>R</mi></math></span> determined by the lifting <span><math><mrow><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>↷</mo><mi>R</mi></mrow></math></span> of the action <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>↷</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span>; (iii) <em>The function</em> <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>♯</mi></mrow></msup></math></span>: a conjugacy invariant length function introduced by Mochizuki (2016).</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125626"},"PeriodicalIF":0.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on the standard zero-free region for L-functions 关于 L 函数标准无零区域的说明
IF 0.8 4区 数学
Expositiones Mathematicae Pub Date : 2024-10-17 DOI: 10.1016/j.exmath.2024.125624
Sun-Kai Leung
{"title":"A note on the standard zero-free region for L-functions","authors":"Sun-Kai Leung","doi":"10.1016/j.exmath.2024.125624","DOIUrl":"10.1016/j.exmath.2024.125624","url":null,"abstract":"<div><div>In this short note, we establish a standard zero-free region for a general class of <span><math><mi>L</mi></math></span>-functions for which their logarithms have coefficients with nonnegative real parts, including the Rankin–Selberg <span><math><mi>L</mi></math></span>-functions for unitary cuspidal automorphic representations.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125624"},"PeriodicalIF":0.8,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信