{"title":"Statistically characterized subgroups related to some non-arithmetic sequence of integers","authors":"Pratulananda Das, Ayan Ghosh","doi":"10.1016/j.exmath.2025.125653","DOIUrl":"10.1016/j.exmath.2025.125653","url":null,"abstract":"<div><div>Very recently in Das and Ghosh (2024), characterized subgroups have been investigated for some special kind of non-arithmetic sequences where certain cardinality related questions were answered. As statistically characterized subgroups Dikranjan et al. (2020) have evolved as non-trivial generalization of characterized subgroups, it is natural to ask the same questions for these subgroups which we try to answer here. The entire investigation emphasizes that these statistically characterized subgroups are mostly larger in size, having cardinality <span><math><mi>c</mi></math></span>, and exhibit behavior that significantly differs from that of classical characterized subgroups. As a consequence, we are able to present solution of an open problem raised in Dikranjan et al. (2020).</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"43 3","pages":"Article 125653"},"PeriodicalIF":0.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quelques considérations galoisiennes relatives à l’extension des constantes d’un corps de fractions tordu","authors":"Bruno Deschamps","doi":"10.1016/j.exmath.2024.125645","DOIUrl":"10.1016/j.exmath.2024.125645","url":null,"abstract":"<div><div>In this article, we state several results relating to the arithmetic of a constants extension of a skew fractions field <span><math><mrow><mi>K</mi><mrow><mo>[</mo><mi>t</mi><mo>,</mo><mi>σ</mi><mo>,</mo><mi>δ</mi><mo>]</mo></mrow></mrow></math></span>. As an application, we show a non-commutative version of the Leptin–Waterhouse theorem: for any profinite group <span><math><mi>Γ</mi></math></span>, there exist a skew field <span><math><mi>K</mi></math></span> and an algebraic, outer and Galois extension <span><math><mrow><mi>L</mi><mo>/</mo><mi>K</mi></mrow></math></span> such that <span><math><mrow><mtext>Gal</mtext><mrow><mo>(</mo><mi>L</mi><mo>/</mo><mi>K</mi><mo>)</mo></mrow><mo>≃</mo><mi>Γ</mi></mrow></math></span>.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"43 3","pages":"Article 125645"},"PeriodicalIF":0.8,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Greg Martin, Pu Justin Scarfy Yang, Aram Bahrini, Prajeet Bajpai, Kübra Benli̇, Jenna Downey, Yuan Yuan Li, Xiaoxuan Liang, Amir Parvardi, Reginald Simpson, Ethan Patrick White, Chi Hoi Yip
{"title":"An annotated bibliography for comparative prime number theory","authors":"Greg Martin, Pu Justin Scarfy Yang, Aram Bahrini, Prajeet Bajpai, Kübra Benli̇, Jenna Downey, Yuan Yuan Li, Xiaoxuan Liang, Amir Parvardi, Reginald Simpson, Ethan Patrick White, Chi Hoi Yip","doi":"10.1016/j.exmath.2024.125644","DOIUrl":"10.1016/j.exmath.2024.125644","url":null,"abstract":"<div><div>The goal of this annotated bibliography is to record every publication on the topic of comparative prime number theory together with a summary of its results. We use a unified system of notation for the quantities being studied and for the hypotheses under which results are obtained.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"43 3","pages":"Article 125644"},"PeriodicalIF":0.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143508438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum spheres as graph C*-algebras: A review","authors":"Francesco D’Andrea","doi":"10.1016/j.exmath.2024.125632","DOIUrl":"10.1016/j.exmath.2024.125632","url":null,"abstract":"<div><div>In this survey, we discuss the description of Vaksman–Soibelman quantum spheres using graph C*-algebras, following the seminal work of Hong and Szymański. We give a slightly different proof of the isomorphism with a graph C*-algebra, borrowing the idea of Mikkelsen and Kaad of using conditional expectations to prove the desired result.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125632"},"PeriodicalIF":0.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143137735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the existence of certain Lehmer numbers modulo a prime","authors":"Bidisha Roy","doi":"10.1016/j.exmath.2024.125628","DOIUrl":"10.1016/j.exmath.2024.125628","url":null,"abstract":"<div><div>A <em>Lehmer number modulo an odd prime number</em> <span><math><mi>p</mi></math></span> is a residue class <span><math><mrow><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>×</mo></mrow></msubsup></mrow></math></span> whose multiplicative inverse <span><math><mover><mrow><mi>a</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> has opposite parity. Lehmer numbers that are also primitive roots are called <em>Lehmer primitive roots</em>. Analogously, in this article we say that a residue class <span><math><mrow><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>×</mo></mrow></msubsup></mrow></math></span> is a <em>Lehmer non-primitive root modulo</em> <span><math><mi>p</mi></math></span> if <span><math><mi>a</mi></math></span> is Lehmer number modulo <span><math><mi>p</mi></math></span> which is not a primitive root. We provide explicit estimates for the difference between the number of Lehmer non-primitive roots modulo a prime <span><math><mi>p</mi></math></span> and their “expected number”, which is <span><math><mfrac><mrow><mi>p</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>ϕ</mi><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. Similar explicit bounds are also provided for the number of <span><math><mi>k</mi></math></span>-consecutive Lehmer numbers modulo a prime, and <span><math><mi>k</mi></math></span>-consecutive Lehmer primitive roots We also prove that for any prime number <span><math><mrow><mi>p</mi><mo>></mo><mn>3</mn><mo>.</mo><mn>05</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>14</mn></mrow></msup></mrow></math></span>, there exists a Lehmer non-primitive root modulo <span><math><mi>p</mi></math></span>. Moreover, we show that for any positive integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span> (respectively, <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span>) and for all primes <span><math><mrow><mi>p</mi><mo>≥</mo><mo>exp</mo><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> (respectively, <span><math><mrow><mi>p</mi><mo>≥</mo><mo>exp</mo><mrow><mo>(</mo><mn>6</mn><mo>.</mo><mn>8</mn><msup><mrow><mn>7</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>), there exist <span><math><mi>k</mi></math></span> consecutive Lehmer numbers modulo <span><math><mi>p</mi></math></span> (respectively, <span><math><mi>k</mi></math></span> consecutive Lehmer primitive roots modulo <span><math><mi>p</mi></math></span>). For large primes <span><math><mi>p</mi></math></span>, these theorems generalize two results which were proven in a paper by Cohen and Trudgian appeared in the Journal of Number Theory in 2019.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125628"},"PeriodicalIF":0.8,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strong Gröbner bases and linear algebra in multivariate polynomial rings over Euclidean domains","authors":"Erhard Aichinger","doi":"10.1016/j.exmath.2024.125627","DOIUrl":"10.1016/j.exmath.2024.125627","url":null,"abstract":"<div><div>We provide a self-contained introduction to Gröbner bases of submodules of <span><math><mrow><mi>R</mi><msup><mrow><mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></mrow></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span>, where <span><math><mi>R</mi></math></span> is a Euclidean domain, and explain how to use these bases to solve linear systems over <span><math><mrow><mi>R</mi><mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125627"},"PeriodicalIF":0.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some remarks on rational right triangles","authors":"Jasbir S. Chahal","doi":"10.1016/j.exmath.2024.125623","DOIUrl":"10.1016/j.exmath.2024.125623","url":null,"abstract":"<div><div>We determine all rational right triangles that tightly enclose the unit circle and the congruent numbers they generate.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125623"},"PeriodicalIF":0.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Classification of the conjugacy classes of SL˜(2,R)","authors":"Christian Táfula","doi":"10.1016/j.exmath.2024.125626","DOIUrl":"10.1016/j.exmath.2024.125626","url":null,"abstract":"<div><div>In this note, we classify the conjugacy classes of <span><math><mrow><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, the universal covering group of <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>. For any non-central element <span><math><mrow><mi>α</mi><mo>∈</mo><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, we show that its conjugacy class may be determined by three invariants: (i) <em>Trace</em>: the trace (valued in the set of positive real numbers <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>) of its image <span><math><mover><mrow><mi>α</mi></mrow><mo>¯</mo></mover></math></span> in <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>; (ii) <em>Direction type</em>: the sign behavior of the induced self-homeomorphism of <span><math><mi>R</mi></math></span> determined by the lifting <span><math><mrow><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>↷</mo><mi>R</mi></mrow></math></span> of the action <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>↷</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span>; (iii) <em>The function</em> <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>♯</mi></mrow></msup></math></span>: a conjugacy invariant length function introduced by Mochizuki (2016).</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125626"},"PeriodicalIF":0.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A note on the standard zero-free region for L-functions","authors":"Sun-Kai Leung","doi":"10.1016/j.exmath.2024.125624","DOIUrl":"10.1016/j.exmath.2024.125624","url":null,"abstract":"<div><div>In this short note, we establish a standard zero-free region for a general class of <span><math><mi>L</mi></math></span>-functions for which their logarithms have coefficients with nonnegative real parts, including the Rankin–Selberg <span><math><mi>L</mi></math></span>-functions for unitary cuspidal automorphic representations.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125624"},"PeriodicalIF":0.8,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}