Expositiones Mathematicae最新文献

筛选
英文 中文
Rings of tautological forms on moduli spaces of curves 曲线模空间上的同义形式环
IF 0.7 4区 数学
Expositiones Mathematicae Pub Date : 2023-03-01 DOI: 10.1016/j.exmath.2023.02.008
Robin de Jong, Stefan van der Lugt
{"title":"Rings of tautological forms on moduli spaces of curves","authors":"Robin de Jong, Stefan van der Lugt","doi":"10.1016/j.exmath.2023.02.008","DOIUrl":"https://doi.org/10.1016/j.exmath.2023.02.008","url":null,"abstract":"","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54342561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Krull-Remak-Schmidt decompositions in Hom-finite additive categories 有限加性范畴中的Krull-Remak-Schmidt分解
IF 0.7 4区 数学
Expositiones Mathematicae Pub Date : 2023-03-01 DOI: 10.1016/j.exmath.2022.12.003
Amit Shah
{"title":"Krull-Remak-Schmidt decompositions in Hom-finite additive categories","authors":"Amit Shah","doi":"10.1016/j.exmath.2022.12.003","DOIUrl":"10.1016/j.exmath.2022.12.003","url":null,"abstract":"<div><p>An additive category in which each object has a Krull-Remak-Schmidt decomposition—that is, a finite direct sum decomposition consisting of objects with local endomorphism rings—is known as a Krull-Schmidt category. A <span><math><mo>Hom</mo></math></span>-finite category is an additive category <span><math><mi>A</mi></math></span> for which there is a commutative unital ring <span><math><mi>k</mi></math></span>, such that each <span><math><mo>Hom</mo></math></span>-set in <span><math><mi>A</mi></math></span> is a finite length <span><math><mi>k</mi></math></span>-module. The aim of this note is to provide a proof that a <span><math><mo>Hom</mo></math></span>-finite category is Krull-Schmidt, if and only if it has split idempotents, if and only if each indecomposable object has a local endomorphism ring.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"41 1","pages":"Pages 220-237"},"PeriodicalIF":0.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41496827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A theory of composites perspective on matrix valued Stieltjes functions 矩阵值Stieltjes函数的复合透视理论
IF 0.7 4区 数学
Expositiones Mathematicae Pub Date : 2023-03-01 DOI: 10.1016/j.exmath.2022.12.005
Graeme W. Milton , Mihai Putinar
{"title":"A theory of composites perspective on matrix valued Stieltjes functions","authors":"Graeme W. Milton ,&nbsp;Mihai Putinar","doi":"10.1016/j.exmath.2022.12.005","DOIUrl":"10.1016/j.exmath.2022.12.005","url":null,"abstract":"<div><p>A series of physically motivated operations appearing in the study of composite materials are interpreted in terms of elementary continued fraction transforms of matrix valued, rational Stieltjes functions.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"41 1","pages":"Pages 186-201"},"PeriodicalIF":0.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47108630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Splitting fields of Xn− Xn−<mm的拆分字段
IF 0.7 4区 数学
Expositiones Mathematicae Pub Date : 2023-03-01 DOI: 10.1016/j.exmath.2023.02.007
Chandrashekhar B. Khare, Alfio Fabio La Rosa, Gabor Wiese
{"title":"Splitting fields of Xn−","authors":"Chandrashekhar B. Khare, Alfio Fabio La Rosa, Gabor Wiese","doi":"10.1016/j.exmath.2023.02.007","DOIUrl":"https://doi.org/10.1016/j.exmath.2023.02.007","url":null,"abstract":"","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45757313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noncommutative Ck functions and Fréchet derivatives of operator functions 非交换Ck函数与算子函数的Fréchet导数
IF 0.7 4区 数学
Expositiones Mathematicae Pub Date : 2023-03-01 DOI: 10.1016/j.exmath.2022.12.004
Evangelos A. Nikitopoulos
{"title":"Noncommutative Ck functions and Fréchet derivatives of operator functions","authors":"Evangelos A. Nikitopoulos","doi":"10.1016/j.exmath.2022.12.004","DOIUrl":"https://doi.org/10.1016/j.exmath.2022.12.004","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Fix a unital &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-algebra &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, and write &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;sa&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; for the set of self-adjoint elements of &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Also, if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;ℂ&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is a continuous function, then write &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;sa&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for the &lt;em&gt;operator function&lt;/em&gt; &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;↦&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; defined via functional calculus. In this paper, we introduce and study a space &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; functions &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;ℂ&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that, no matter the choice of &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, the operator function &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;sa&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-times continuously Fréchet differentiable. In other words, if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; “lifts” to a &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; map &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;sa&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, for any (possibly noncommutative) unital &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-algebra &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. For this reason, we call &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; the space of &lt;em&gt;noncommutative&lt;/em&gt; &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; &lt;em&gt;functions&lt;/em&gt;. Our proof that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;sa&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, which requires only knowledge of the Fréchet derivatives of polynomials and operator norm estim","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"41 1","pages":"Pages 115-163"},"PeriodicalIF":0.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49834269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational points on X0+( X0+上的有理点(</mml:
IF 0.7 4区 数学
Expositiones Mathematicae Pub Date : 2023-03-01 DOI: 10.1016/j.exmath.2023.02.009
V. Arul, J. Müller
{"title":"Rational points on X0+(","authors":"V. Arul, J. Müller","doi":"10.1016/j.exmath.2023.02.009","DOIUrl":"https://doi.org/10.1016/j.exmath.2023.02.009","url":null,"abstract":"","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46963822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximations of the Riley slice Riley切片的近似
IF 0.7 4区 数学
Expositiones Mathematicae Pub Date : 2023-03-01 DOI: 10.1016/j.exmath.2022.12.002
Alex Elzenaar , Gaven Martin , Jeroen Schillewaert
{"title":"Approximations of the Riley slice","authors":"Alex Elzenaar ,&nbsp;Gaven Martin ,&nbsp;Jeroen Schillewaert","doi":"10.1016/j.exmath.2022.12.002","DOIUrl":"10.1016/j.exmath.2022.12.002","url":null,"abstract":"<div><p>Adapting the ideas of L. Keen and C. Series used in their study of the Riley slice of Schottky groups generated by two parabolics, we explicitly identify ‘half-space’ neighbourhoods of pleating rays which lie completely in the Riley slice. This gives a provable method to determine if a point is in the Riley slice or not. We also discuss the family of Farey polynomials which determine the rational pleating rays and their root set which determines the Riley slice; this leads to a dynamical systems interpretation of the slice. Adapting these methods to the case of Schottky groups generated by two elliptic elements in subsequent work facilitates the programme to identify all the finitely many arithmetic generalised triangle groups and their kin.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"41 1","pages":"Pages 20-54"},"PeriodicalIF":0.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42835286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Thresholds for the monochromatic clique transversal game 单色集团横向博弈的阈值
IF 0.7 4区 数学
Expositiones Mathematicae Pub Date : 2023-03-01 DOI: 10.1016/j.exmath.2022.11.001
Csilla Bujtás , Pakanun Dokyeesun , Sandi Klavžar
{"title":"Thresholds for the monochromatic clique transversal game","authors":"Csilla Bujtás ,&nbsp;Pakanun Dokyeesun ,&nbsp;Sandi Klavžar","doi":"10.1016/j.exmath.2022.11.001","DOIUrl":"10.1016/j.exmath.2022.11.001","url":null,"abstract":"<div><p>We study a recently introduced two-person combinatorial game, the <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span>-monochromatic clique transversal game which is played by Alice and Bob on a graph <span><math><mi>G</mi></math></span>. As we observe, this game is equivalent to the <span><math><mrow><mo>(</mo><mi>b</mi><mo>,</mo><mi>a</mi><mo>)</mo></mrow></math></span>-biased Maker–Breaker game played on the clique-hypergraph of <span><math><mi>G</mi></math></span>. Our main results concern the threshold bias <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> that is the smallest integer <span><math><mi>a</mi></math></span> such that Alice can win in the <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>-monochromatic clique transversal game on <span><math><mi>G</mi></math></span> if she is the first to play. Among other results, we determine the possible values of <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for the disjoint union of graphs, prove a formula for <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> if <span><math><mi>G</mi></math></span> is triangle-free, and obtain the exact values of <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mspace></mspace><mo>□</mo><mspace></mspace><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mspace></mspace><mo>□</mo><mspace></mspace><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mspace></mspace><mo>□</mo><mspace></mspace><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> for all possible pairs <span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span>.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"41 1","pages":"Pages 202-219"},"PeriodicalIF":0.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43977444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The product of lattice covolume and discrete series formal dimension: p-adic GL(2) 格协体积与离散级数形式维数的乘积:p进GL(2)
IF 0.7 4区 数学
Expositiones Mathematicae Pub Date : 2023-03-01 DOI: 10.1016/j.exmath.2022.09.001
L.C. Ruth
{"title":"The product of lattice covolume and discrete series formal dimension: p-adic GL(2)","authors":"L.C. Ruth","doi":"10.1016/j.exmath.2022.09.001","DOIUrl":"https://doi.org/10.1016/j.exmath.2022.09.001","url":null,"abstract":"<div><p>Let <span><math><mi>F</mi></math></span> be a nonarchimedean local field of characteristic 0 and residue field of order not divisible by 2. We show how to calculate the product of the covolume of a torsion-free lattice in <span><math><mrow><mi>P</mi><mi>G</mi><mi>L</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> and the formal dimension of a discrete series representation of <span><math><mrow><mi>G</mi><mi>L</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>. The covolume comes from a theorem of Ihara, and the formal dimensions are contained in results of Corwin, Moy, and Sally. By a theorem going back to Atiyah, and by triviality of the second cohomology group of a free group, the resulting product is the von Neumann dimension of a discrete series representation considered as a representation of a free group factor.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"41 1","pages":"Pages 55-70"},"PeriodicalIF":0.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49877666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An analogue of Furstenberg–Sárközy’s theorem and an alternative solution to Waring’s problem over finite fields Furstenberg-Sárközy定理的一个类比和有限域上韦林问题的一个替代解
IF 0.7 4区 数学
Expositiones Mathematicae Pub Date : 2023-03-01 DOI: 10.1016/j.exmath.2022.10.003
Yeşi̇m Demi̇roğlu Karabulut
{"title":"An analogue of Furstenberg–Sárközy’s theorem and an alternative solution to Waring’s problem over finite fields","authors":"Yeşi̇m Demi̇roğlu Karabulut","doi":"10.1016/j.exmath.2022.10.003","DOIUrl":"https://doi.org/10.1016/j.exmath.2022.10.003","url":null,"abstract":"<div><p>In this paper, we use Cayley digraphs to obtain some new self-contained proofs for Waring’s problem over finite fields, proving that any element of a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> can be written as a sum of <span><math><mi>m</mi></math></span> many <span><math><mrow><mi>k</mi><mtext>th</mtext></mrow></math></span> powers as long as <span><math><mrow><mi>q</mi><mo>&gt;</mo><msup><mrow><mi>k</mi></mrow><mrow><mfrac><mrow><mn>2</mn><mi>m</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></math></span>; and we also compute the smallest positive integers <span><math><mi>m</mi></math></span> such that every element of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> can be written as a sum of <span><math><mi>m</mi></math></span> many <span><math><mrow><mi>k</mi><mtext>th</mtext></mrow></math></span> powers for all <span><math><mi>q</mi></math></span> too small to be covered by the above mentioned results when <span><math><mrow><mn>2</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><mn>37</mn></mrow></math></span>.</p><p>In the process of developing the proofs mentioned above, we arrive at another result (providing a finite field analogue of Furstenberg–Sárközy’s Theorem) showing that any subset <span><math><mi>E</mi></math></span> of a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> for which <span><math><mrow><mrow><mo>|</mo><mi>E</mi><mo>|</mo></mrow><mo>&gt;</mo><mfrac><mrow><mi>q</mi><mi>k</mi></mrow><mrow><msqrt><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msqrt></mrow></mfrac></mrow></math></span> must contain at least two distinct elements whose difference is a <span><math><mrow><mi>k</mi><mtext>th</mtext></mrow></math></span> power.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"41 1","pages":"Pages 164-185"},"PeriodicalIF":0.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49877667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信