{"title":"The Riemann–Roch theorem for the Adams operations","authors":"A. Navarro , J. Navarro","doi":"10.1016/j.exmath.2023.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the classical Riemann–Roch theorems for the Adams operations <span><math><mrow><mspace></mspace><msup><mrow><mi>ψ</mi></mrow><mrow><mi>j</mi></mrow></msup><mspace></mspace></mrow></math></span> on <span><math><mi>K</mi></math></span>-theory: a statement with coefficients on <span><math><mrow><mi>Z</mi><mrow><mo>[</mo><msup><mrow><mi>j</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>]</mo></mrow></mrow></math></span><span><span>, that holds for arbitrary projective morphisms, as well as another statement with </span>integral coefficients<span>, that is valid for closed immersions. In presence of rational coefficients, we also analyze the relation between the corresponding Riemann–Roch formula for one Adams operation and the analogous formula for the Chern character. To do so, we complete the elementary exposition of the work of Panin–Smirnov that was initiated by the first author in a previous paper. Their notion of oriented cohomology<span> theory on algebraic varieties allows to use classical arguments to prove general and neat statements, which imply all the aforementioned results as particular cases.</span></span></span></p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086923000622","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove the classical Riemann–Roch theorems for the Adams operations on -theory: a statement with coefficients on , that holds for arbitrary projective morphisms, as well as another statement with integral coefficients, that is valid for closed immersions. In presence of rational coefficients, we also analyze the relation between the corresponding Riemann–Roch formula for one Adams operation and the analogous formula for the Chern character. To do so, we complete the elementary exposition of the work of Panin–Smirnov that was initiated by the first author in a previous paper. Their notion of oriented cohomology theory on algebraic varieties allows to use classical arguments to prove general and neat statements, which imply all the aforementioned results as particular cases.
期刊介绍:
Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.