{"title":"关于拉马努金的24阶连分数","authors":"Shraddha Rajkhowa, Nipen Saikia","doi":"10.1016/j.exmath.2023.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Two continued fractions <span><math><mrow><mi>U</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span><span> of order twenty-four are obtained from a general continued fraction identity of Ramanujan. Some theta-function and modular identities for </span><span><math><mrow><mi>U</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> are established to prove general theorems for the explicit evaluations of <span><math><mrow><mi>U</mi><mrow><mo>(</mo><mo>±</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mo>±</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span>. From the theta-function identities of <span><math><mrow><mi>U</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span>, three colour partition identities are derived as application to partition theory of integer. Further, <span><math><mn>2</mn></math></span>-, <span><math><mn>4</mn></math></span>- and <span><math><mn>8</mn></math></span>-dissection formulas are established for the continued fractions <span><math><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mo>≔</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>U</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mo>≔</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>V</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span>, and their reciprocals.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Ramanujan’s continued fractions of order twenty-four\",\"authors\":\"Shraddha Rajkhowa, Nipen Saikia\",\"doi\":\"10.1016/j.exmath.2023.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two continued fractions <span><math><mrow><mi>U</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span><span> of order twenty-four are obtained from a general continued fraction identity of Ramanujan. Some theta-function and modular identities for </span><span><math><mrow><mi>U</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> are established to prove general theorems for the explicit evaluations of <span><math><mrow><mi>U</mi><mrow><mo>(</mo><mo>±</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mo>±</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span>. From the theta-function identities of <span><math><mrow><mi>U</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span>, three colour partition identities are derived as application to partition theory of integer. Further, <span><math><mn>2</mn></math></span>-, <span><math><mn>4</mn></math></span>- and <span><math><mn>8</mn></math></span>-dissection formulas are established for the continued fractions <span><math><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mo>≔</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>U</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mo>≔</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>V</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span>, and their reciprocals.</p></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086923000658\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086923000658","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Ramanujan’s continued fractions of order twenty-four
Two continued fractions and of order twenty-four are obtained from a general continued fraction identity of Ramanujan. Some theta-function and modular identities for and are established to prove general theorems for the explicit evaluations of and . From the theta-function identities of and , three colour partition identities are derived as application to partition theory of integer. Further, -, - and -dissection formulas are established for the continued fractions and , and their reciprocals.
期刊介绍:
Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.