{"title":"Commutators and products of Lie ideals of prime rings","authors":"Tsiu-Kwen Lee , Jheng-Huei Lin","doi":"10.1016/j.exmath.2025.125658","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by some recent results on Lie ideals, it is proved that if <span><math><mi>L</mi></math></span> is a Lie ideal of a simple ring <span><math><mi>R</mi></math></span> with center <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, then <span><math><mrow><mi>L</mi><mo>⊆</mo><mi>Z</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>L</mi><mo>=</mo><mi>Z</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mi>a</mi><mo>+</mo><mi>Z</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> for some noncentral <span><math><mrow><mi>a</mi><mo>∈</mo><mi>L</mi></mrow></math></span>, or <span><math><mrow><mrow><mo>[</mo><mi>R</mi><mo>,</mo><mi>R</mi><mo>]</mo></mrow><mo>⊆</mo><mi>L</mi></mrow></math></span>, which gives a generalization of a classical theorem due to Herstein. We also study commutators and products of noncentral Lie ideals of prime rings. Precisely, let <span><math><mi>R</mi></math></span> be a prime ring with extended centroid <span><math><mi>C</mi></math></span>. We completely characterize Lie ideals <span><math><mi>L</mi></math></span> and elements <span><math><mi>a</mi></math></span> of <span><math><mi>R</mi></math></span> such that <span><math><mrow><mi>L</mi><mo>+</mo><mi>a</mi><mi>L</mi></mrow></math></span> contains a nonzero ideal of <span><math><mi>R</mi></math></span>. Given noncentral Lie ideals <span><math><mrow><mi>K</mi><mo>,</mo><mi>L</mi></mrow></math></span> of <span><math><mi>R</mi></math></span>, it is proved that <span><math><mrow><mrow><mo>[</mo><mi>K</mi><mo>,</mo><mi>L</mi><mo>]</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> if and only if <span><math><mrow><mi>K</mi><mi>C</mi><mo>=</mo><mi>L</mi><mi>C</mi><mo>=</mo><mi>C</mi><mi>a</mi><mo>+</mo><mi>C</mi></mrow></math></span> for any noncentral element <span><math><mrow><mi>a</mi><mo>∈</mo><mi>L</mi></mrow></math></span>. As a consequence, we characterize noncentral Lie ideals <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> with <span><math><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></math></span> such that <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> contains a nonzero ideal of <span><math><mi>R</mi></math></span>. Finally, we characterize noncentral Lie ideals <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>’s and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>’s satisfying <span><math><mrow><mrow><mo>[</mo><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mo>]</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> from the viewpoint of centralizers.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"43 3","pages":"Article 125658"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086925000131","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by some recent results on Lie ideals, it is proved that if is a Lie ideal of a simple ring with center , then , for some noncentral , or , which gives a generalization of a classical theorem due to Herstein. We also study commutators and products of noncentral Lie ideals of prime rings. Precisely, let be a prime ring with extended centroid . We completely characterize Lie ideals and elements of such that contains a nonzero ideal of . Given noncentral Lie ideals of , it is proved that if and only if for any noncentral element . As a consequence, we characterize noncentral Lie ideals with such that contains a nonzero ideal of . Finally, we characterize noncentral Lie ideals ’s and ’s satisfying from the viewpoint of centralizers.
期刊介绍:
Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.