单位三角形群的性质与Mackey方法

IF 0.8 4区 数学 Q2 MATHEMATICS
Mikhail Ignatev , Mikhail Venchakov
{"title":"单位三角形群的性质与Mackey方法","authors":"Mikhail Ignatev ,&nbsp;Mikhail Venchakov","doi":"10.1016/j.exmath.2025.125656","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>U</mi></math></span> be the unitriangular group over a finite field. We consider an interesting class of irreducible complex characters of <span><math><mi>U</mi></math></span>, so-called characters of depth 2. This is a next natural step after characters of maximal and submaximal dimension, whose description is already known. We explicitly describe the support of a character of depth 2 by a system of defining algebraic equations. After that, we calculate the value of such a character on an element from the support. The main technical tool used in the proofs is the Mackey little group method for semidirect products.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"43 3","pages":"Article 125656"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characters of the unitriangular group and the Mackey method\",\"authors\":\"Mikhail Ignatev ,&nbsp;Mikhail Venchakov\",\"doi\":\"10.1016/j.exmath.2025.125656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>U</mi></math></span> be the unitriangular group over a finite field. We consider an interesting class of irreducible complex characters of <span><math><mi>U</mi></math></span>, so-called characters of depth 2. This is a next natural step after characters of maximal and submaximal dimension, whose description is already known. We explicitly describe the support of a character of depth 2 by a system of defining algebraic equations. After that, we calculate the value of such a character on an element from the support. The main technical tool used in the proofs is the Mackey little group method for semidirect products.</div></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":\"43 3\",\"pages\":\"Article 125656\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086925000118\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086925000118","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设U是有限域上的幺三角形群。我们考虑一类有趣的U的不可约复字符,即深度为2的字符。这是继极大维和次极大维特征之后的一个自然步骤,它们的描述已经已知。我们用定义代数方程系统明确地描述了深度为2的特征的支持。然后,计算支持元素上这样一个字符的值。证明中使用的主要技术工具是半直接积的麦基小群法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characters of the unitriangular group and the Mackey method
Let U be the unitriangular group over a finite field. We consider an interesting class of irreducible complex characters of U, so-called characters of depth 2. This is a next natural step after characters of maximal and submaximal dimension, whose description is already known. We explicitly describe the support of a character of depth 2 by a system of defining algebraic equations. After that, we calculate the value of such a character on an element from the support. The main technical tool used in the proofs is the Mackey little group method for semidirect products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信