Massimo Bilancia, Andrea Nigri, Barbara Cafarelli, Danilo Di Bona
{"title":"An interpretable cluster-based logistic regression model, with application to the characterization of response to therapy in severe eosinophilic asthma.","authors":"Massimo Bilancia, Andrea Nigri, Barbara Cafarelli, Danilo Di Bona","doi":"10.1515/ijb-2023-0061","DOIUrl":"10.1515/ijb-2023-0061","url":null,"abstract":"<p><p>Asthma is a disease characterized by chronic airway hyperresponsiveness and inflammation, with signs of variable airflow limitation and impaired lung function leading to respiratory symptoms such as shortness of breath, chest tightness and cough. Eosinophilic asthma is a distinct phenotype that affects more than half of patients diagnosed with severe asthma. It can be effectively treated with monoclonal antibodies targeting specific immunological signaling pathways that fuel the inflammation underlying the disease, particularly Interleukin-5 (IL-5), a cytokine that plays a crucial role in asthma. In this study, we propose a data analysis pipeline aimed at identifying subphenotypes of severe eosinophilic asthma in relation to response to therapy at follow-up, which could have great potential for use in routine clinical practice. Once an optimal partition of patients into subphenotypes has been determined, the labels indicating the group to which each patient has been assigned are used in a novel way. For each input variable in a specialized logistic regression model, a clusterwise effect on response to therapy is determined by an appropriate interaction term between the input variable under consideration and the cluster label. We show that the clusterwise odds ratios can be meaningfully interpreted conditional on the cluster label. In this way, we can define an effect measure for the response variable for each input variable in each of the groups identified by the clustering algorithm, which is not possible in standard logistic regression because the effect of the reference class is aliased with the overall intercept. The interpretability of the model is enforced by promoting sparsity, a goal achieved by learning interactions in a hierarchical manner using a special group-Lasso technique. In addition, valid expressions are provided for computing odds ratios in the unusual parameterization used by the sparsity-promoting algorithm. We show how to apply the proposed data analysis pipeline to the problem of sub-phenotyping asthma patients also in terms of quality of response to therapy with monoclonal antibodies.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"361-388"},"PeriodicalIF":1.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Response to comments on 'sensitivity of estimands in clinical trials with imperfect compliance'.","authors":"Heng Chen, Daniel F Heitjan","doi":"10.1515/ijb-2024-0013","DOIUrl":"10.1515/ijb-2024-0013","url":null,"abstract":"","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"433"},"PeriodicalIF":1.2,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimation of a decreasing mean residual life based on ranked set sampling with an application to survival analysis.","authors":"Elham Zamanzade, Ehsan Zamanzade, Afshin Parvardeh","doi":"10.1515/ijb-2023-0051","DOIUrl":"10.1515/ijb-2023-0051","url":null,"abstract":"<p><p>The mean residual lifetime (MRL) of a unit in a population at a given time <i>t</i>, is the average remaining lifetime among those population units still alive at the time <i>t</i>. In some applications, it is reasonable to assume that MRL function is a decreasing function over time. Thus, one natural way to improve the estimation of MRL function is to use this assumption in estimation process. In this paper, we develop an MRL estimator in ranked set sampling (RSS) which, enjoys the monotonicity property. We prove that it is a strongly uniformly consistent estimator of true MRL function. We also show that the asymptotic distribution of the introduced estimator is the same as the empirical one, and therefore the novel estimator is obtained \"free of charge\", at least in an asymptotic sense. We then compare the proposed estimator with its competitors in RSS and simple random sampling (SRS) using Monte Carlo simulation. Our simulation results confirm the superiority of the proposed procedure for finite sample sizes. Finally, a real dataset from the Surveillance, Epidemiology and End Results (SEER) program of the US National Cancer Institute (NCI) is used to show that the introduced technique can provide more accurate estimates for the average remaining lifetime of patients with breast cancer.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"571-583"},"PeriodicalIF":1.2,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Statistical models for assessing agreement for quantitative data with heterogeneous random raters and replicate measurements.","authors":"Claus Thorn Ekstrøm, Bendix Carstensen","doi":"10.1515/ijb-2023-0037","DOIUrl":"10.1515/ijb-2023-0037","url":null,"abstract":"<p><p>Agreement between methods for quantitative measurements are typically assessed by computing limits of agreement between pairs of methods and/or by illustration through Bland-Altman plots. We consider the situation where the observed measurement methods are considered a random sample from a population of possible methods, and discuss how the underlying linear mixed effects model can be extended to this situation. This is relevant when, for example, the methods represent raters/judges that are used to score specific individuals or items. In the case of random methods, we are not interested in estimates pertaining to the specific methods, but are instead interested in quantifying the variation between the methods actually involved making measurements, and accommodating this as an extra source of variation when generalizing to the clinical performance of a method. In the model we allow raters to have individual precision/skill and permit linked replicates (<i>i.e.</i>, when the numbering, labeling or ordering of the replicates within items is important). Applications involving estimation of the limits of agreement for two datasets are shown: A dataset of spatial perception among a group of students as well as a dataset on consumer preference of French chocolate. The models are implemented in the MethComp package for R [Carstensen B, Gurrin L, Ekstrøm CT, Figurski M. MethComp: functions for analysis of agreement in method comparison studies; 2013. R package version 1.22, R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2012].</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"455-466"},"PeriodicalIF":1.2,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flexible variable selection in the presence of missing data.","authors":"Brian D Williamson, Ying Huang","doi":"10.1515/ijb-2023-0059","DOIUrl":"10.1515/ijb-2023-0059","url":null,"abstract":"<p><p>In many applications, it is of interest to identify a parsimonious set of features, or panel, from multiple candidates that achieves a desired level of performance in predicting a response. This task is often complicated in practice by missing data arising from the sampling design or other random mechanisms. Most recent work on variable selection in missing data contexts relies in some part on a finite-dimensional statistical model, e.g., a generalized or penalized linear model. In cases where this model is misspecified, the selected variables may not all be truly scientifically relevant and can result in panels with suboptimal classification performance. To address this limitation, we propose a nonparametric variable selection algorithm combined with multiple imputation to develop flexible panels in the presence of missing-at-random data. We outline strategies based on the proposed algorithm that achieve control of commonly used error rates. Through simulations, we show that our proposal has good operating characteristics and results in panels with higher classification and variable selection performance compared to several existing penalized regression approaches in cases where a generalized linear model is misspecified. Finally, we use the proposed method to develop biomarker panels for separating pancreatic cysts with differing malignancy potential in a setting where complicated missingness in the biomarkers arose due to limited specimen volumes.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"347-359"},"PeriodicalIF":1.2,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323294/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139724719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving the mixed model for repeated measures to robustly increase precision in randomized trials.","authors":"Bingkai Wang, Yu Du","doi":"10.1515/ijb-2022-0101","DOIUrl":"10.1515/ijb-2022-0101","url":null,"abstract":"<p><p>In randomized trials, repeated measures of the outcome are routinely collected. The mixed model for repeated measures (MMRM) leverages the information from these repeated outcome measures, and is often used for the primary analysis to estimate the average treatment effect at the primary endpoint. MMRM, however, can suffer from bias and precision loss when it models intermediate outcomes incorrectly, and hence fails to use the post-randomization information harmlessly. This paper proposes an extension of the commonly used MMRM, called IMMRM, that improves the robustness and optimizes the precision gain from covariate adjustment, stratified randomization, and adjustment for intermediate outcome measures. Under regularity conditions and missing completely at random, we prove that the IMMRM estimator for the average treatment effect is robust to arbitrary model misspecification and is asymptotically equal or more precise than the analysis of covariance (ANCOVA) estimator and the MMRM estimator. Under missing at random, IMMRM is less likely to be misspecified than MMRM, and we demonstrate via simulation studies that IMMRM continues to have less bias and smaller variance. Our results are further supported by a re-analysis of a randomized trial for the treatment of diabetes.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"585-598"},"PeriodicalIF":1.2,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sophie Potts, Elisabeth Bergherr, Constantin Reinke, Colin Griesbach
{"title":"Prediction-based variable selection for component-wise gradient boosting.","authors":"Sophie Potts, Elisabeth Bergherr, Constantin Reinke, Colin Griesbach","doi":"10.1515/ijb-2023-0052","DOIUrl":"10.1515/ijb-2023-0052","url":null,"abstract":"<p><p>Model-based component-wise gradient boosting is a popular tool for data-driven variable selection. In order to improve its prediction and selection qualities even further, several modifications of the original algorithm have been developed, that mainly focus on different stopping criteria, leaving the actual variable selection mechanism untouched. We investigate different prediction-based mechanisms for the variable selection step in model-based component-wise gradient boosting. These approaches include Akaikes Information Criterion (AIC) as well as a selection rule relying on the component-wise test error computed via cross-validation. We implemented the AIC and cross-validation routines for Generalized Linear Models and evaluated them regarding their variable selection properties and predictive performance. An extensive simulation study revealed improved selection properties whereas the prediction error could be lowered in a real world application with age-standardized COVID-19 incidence rates.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"293-314"},"PeriodicalIF":1.2,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138435376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bayesian second-order sensitivity of longitudinal inferences to non-ignorability: an application to antidepressant clinical trial data.","authors":"Elahe Momeni Roochi, Samaneh Eftekhari Mahabadi","doi":"10.1515/ijb-2022-0014","DOIUrl":"10.1515/ijb-2022-0014","url":null,"abstract":"<p><p>Incomplete data is a prevalent complication in longitudinal studies due to individuals' drop-out before intended completion time. Currently available methods via commercial software for analyzing incomplete longitudinal data at best rely on the ignorability of the drop-outs. If the underlying missing mechanism was non-ignorable, potential bias arises in the statistical inferences. To remove the bias when the drop-out is non-ignorable, joint complete-data and drop-out models have been proposed which involve computational difficulties and untestable assumptions. Since the critical ignorability assumption is unverifiable based on the observed part of the sample, some local sensitivity indices have been proposed in the literature. Specifically, Eftekhari Mahabadi (Second-order local sensitivity to non-ignorability in Bayesian inferences. Stat Med 2018;59:55-95) proposed a second-order local sensitivity tool for Bayesian analysis of cross-sectional studies and show its better performance for handling bias compared with the first-order ones. In this paper, we aim to extend this index for the Bayesian sensitivity analysis of normal longitudinal studies with drop-outs. The index is driven based on a selection model for the drop-out mechanism and a Bayesian linear mixed-effect complete-data model. The presented formulas are calculated using the posterior estimation and draws from the simpler ignorable model. The method is illustrated via some simulation studies and sensitivity analysis of a real antidepressant clinical trial data. Overall, the numerical analysis showed that when repeated outcomes are subject to missingness, regression coefficient estimates are nearly approximated well by a linear function in the neighbourhood of MAR model, but there are a considerable amount of second-order sensitivity for the error term and random effect variances in Bayesian linear mixed-effect model framework.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"599-629"},"PeriodicalIF":1.2,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138441586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revisiting incidence rates comparison under right censorship.","authors":"Pablo Martínez-Camblor, Susana Díaz-Coto","doi":"10.1515/ijb-2023-0025","DOIUrl":"10.1515/ijb-2023-0025","url":null,"abstract":"<p><p>Data description is the first step for understanding the nature of the problem at hand. Usually, it is a simple task that does not require any particular assumption. However, the interpretation of the used descriptive measures can be a source of confusion and misunderstanding. The incidence rate is the quotient between the number of observed events and the sum of time that the studied population was at risk of having this event (person-time). Despite this apparently simple definition, its interpretation is not free of complexity. In this piece of research, we revisit the incidence rate estimator under right-censorship. We analyze the effect that the censoring time distribution can have on the observed results, and its relevance in the comparison of two or more incidence rates. We propose a solution for limiting the impact that the data collection process can have on the results of the hypothesis testing. We explore the finite-sample behavior of the considered estimators from Monte Carlo simulations. Two examples based on synthetic data illustrate the considered problem. The R code and data used are provided as Supplementary Material.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"491-506"},"PeriodicalIF":1.2,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89720368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}