Dimitra Eleftheriou, Thomas Piper, Mario Thevis, Tereza Neocleous
{"title":"A multivariate Bayesian learning approach for improved detection of doping in athletes using urinary steroid profiles.","authors":"Dimitra Eleftheriou, Thomas Piper, Mario Thevis, Tereza Neocleous","doi":"10.1515/ijb-2024-0019","DOIUrl":null,"url":null,"abstract":"<p><p>Biomarker analysis of athletes' urinary steroid profiles is crucial for the success of anti-doping efforts. Current statistical analysis methods generate personalised limits for each athlete based on univariate modelling of longitudinal biomarker values from the urinary steroid profile. However, simultaneous modelling of multiple biomarkers has the potential to further enhance abnormality detection. In this study, we propose a multivariate Bayesian adaptive model for longitudinal data analysis, which extends the established single-biomarker model in forensic toxicology. The proposed approach employs Markov chain Monte Carlo sampling methods and addresses the scarcity of confirmed abnormal values through a one-class classification algorithm. By adapting decision boundaries as new measurements are obtained, the model provides robust and personalised detection thresholds for each athlete. We tested the proposed approach on a database of 229 athletes, which includes longitudinal steroid profiles containing samples classified as normal, atypical, or confirmed abnormal. Our results demonstrate improved detection performance, highlighting the potential value of a multivariate approach in doping detection.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2024-0019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Biomarker analysis of athletes' urinary steroid profiles is crucial for the success of anti-doping efforts. Current statistical analysis methods generate personalised limits for each athlete based on univariate modelling of longitudinal biomarker values from the urinary steroid profile. However, simultaneous modelling of multiple biomarkers has the potential to further enhance abnormality detection. In this study, we propose a multivariate Bayesian adaptive model for longitudinal data analysis, which extends the established single-biomarker model in forensic toxicology. The proposed approach employs Markov chain Monte Carlo sampling methods and addresses the scarcity of confirmed abnormal values through a one-class classification algorithm. By adapting decision boundaries as new measurements are obtained, the model provides robust and personalised detection thresholds for each athlete. We tested the proposed approach on a database of 229 athletes, which includes longitudinal steroid profiles containing samples classified as normal, atypical, or confirmed abnormal. Our results demonstrate improved detection performance, highlighting the potential value of a multivariate approach in doping detection.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.