{"title":"跨领域优化针对目标患者群体的个性化治疗。","authors":"Yuan Chen, Donglin Zeng, Yuanjia Wang","doi":"10.1515/ijb-2024-0068","DOIUrl":null,"url":null,"abstract":"<p><p>Learning individualized treatment rules (ITRs) for a target patient population with mental disorders is confronted with many challenges. First, the target population may be different from the training population that provided data for learning ITRs. Ignoring differences between the training patient data and the target population can result in sub-optimal treatment strategies for the target population. Second, for mental disorders, a patient's underlying mental state is not observed but can be inferred from measures of high-dimensional combinations of symptomatology. Treatment mechanisms are unknown and can be complex, and thus treatment effect moderation can take complicated forms. To address these challenges, we propose a novel method that connects measurement models, efficient weighting schemes, and flexible neural network architecture through latent variables to tailor treatments for a target population. Patients' underlying mental states are represented by a compact set of latent state variables while preserving interpretability. Weighting schemes are designed based on lower-dimensional latent variables to efficiently balance population differences so that biases in learning the latent structure and treatment effects are mitigated. Extensive simulation studies demonstrated consistent superiority of the proposed method and the weighting approach. Applications to two real-world studies of patients with major depressive disorder have shown a broad utility of the proposed method in improving treatment outcomes in the target population.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"437-453"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing personalized treatments for targeted patient populations across multiple domains.\",\"authors\":\"Yuan Chen, Donglin Zeng, Yuanjia Wang\",\"doi\":\"10.1515/ijb-2024-0068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Learning individualized treatment rules (ITRs) for a target patient population with mental disorders is confronted with many challenges. First, the target population may be different from the training population that provided data for learning ITRs. Ignoring differences between the training patient data and the target population can result in sub-optimal treatment strategies for the target population. Second, for mental disorders, a patient's underlying mental state is not observed but can be inferred from measures of high-dimensional combinations of symptomatology. Treatment mechanisms are unknown and can be complex, and thus treatment effect moderation can take complicated forms. To address these challenges, we propose a novel method that connects measurement models, efficient weighting schemes, and flexible neural network architecture through latent variables to tailor treatments for a target population. Patients' underlying mental states are represented by a compact set of latent state variables while preserving interpretability. Weighting schemes are designed based on lower-dimensional latent variables to efficiently balance population differences so that biases in learning the latent structure and treatment effects are mitigated. Extensive simulation studies demonstrated consistent superiority of the proposed method and the weighting approach. Applications to two real-world studies of patients with major depressive disorder have shown a broad utility of the proposed method in improving treatment outcomes in the target population.</p>\",\"PeriodicalId\":50333,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\" \",\"pages\":\"437-453\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2024-0068\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2024-0068","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing personalized treatments for targeted patient populations across multiple domains.
Learning individualized treatment rules (ITRs) for a target patient population with mental disorders is confronted with many challenges. First, the target population may be different from the training population that provided data for learning ITRs. Ignoring differences between the training patient data and the target population can result in sub-optimal treatment strategies for the target population. Second, for mental disorders, a patient's underlying mental state is not observed but can be inferred from measures of high-dimensional combinations of symptomatology. Treatment mechanisms are unknown and can be complex, and thus treatment effect moderation can take complicated forms. To address these challenges, we propose a novel method that connects measurement models, efficient weighting schemes, and flexible neural network architecture through latent variables to tailor treatments for a target population. Patients' underlying mental states are represented by a compact set of latent state variables while preserving interpretability. Weighting schemes are designed based on lower-dimensional latent variables to efficiently balance population differences so that biases in learning the latent structure and treatment effects are mitigated. Extensive simulation studies demonstrated consistent superiority of the proposed method and the weighting approach. Applications to two real-world studies of patients with major depressive disorder have shown a broad utility of the proposed method in improving treatment outcomes in the target population.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.