Awa Diop, Caroline Sirois, Jason R Guertin, Mireille E Schnitzer, James M Brophy, Claudia Blais, Denis Talbot
{"title":"History-restricted marginal structural model and latent class growth analysis of treatment trajectories for a time-dependent outcome.","authors":"Awa Diop, Caroline Sirois, Jason R Guertin, Mireille E Schnitzer, James M Brophy, Claudia Blais, Denis Talbot","doi":"10.1515/ijb-2023-0116","DOIUrl":null,"url":null,"abstract":"<p><p>In previous work, we introduced a framework that combines latent class growth analysis (LCGA) with marginal structural models (LCGA-MSM). LCGA-MSM first summarizes the numerous time-varying treatment patterns into a few trajectory groups and then allows for a population-level causal interpretation of the group differences. However, the LCGA-MSM framework is not suitable when the outcome is time-dependent. In this study, we propose combining a nonparametric history-restricted marginal structural model (HRMSM) with LCGA. HRMSMs can be seen as an application of standard MSMs on multiple time intervals. To the best of our knowledge, we also present the first application of HRMSMs with a time-to-event outcome. It was previously noted that HRMSMs could pose interpretation problems in survival analysis when either targeting a hazard ratio or a survival curve. We propose a causal parameter that bypasses these interpretation challenges. We consider three different estimators of the parameters: inverse probability of treatment weighting (IPTW), g-computation, and a pooled longitudinal targeted maximum likelihood estimator (pooled LTMLE). We conduct simulation studies to measure the performance of the proposed LCGA-HRMSM. For all scenarios, we obtain unbiased estimates when using either g-computation or pooled LTMLE. IPTW produced estimates with slightly larger bias in some scenarios. Overall, all approaches have good coverage of the 95 % confidence interval. We applied our approach to a population of older Quebecers composed of 57,211 statin initiators and found that a greater adherence to statins was associated with a lower combined risk of cardiovascular disease or all-cause mortality.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"467-490"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2023-0116","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In previous work, we introduced a framework that combines latent class growth analysis (LCGA) with marginal structural models (LCGA-MSM). LCGA-MSM first summarizes the numerous time-varying treatment patterns into a few trajectory groups and then allows for a population-level causal interpretation of the group differences. However, the LCGA-MSM framework is not suitable when the outcome is time-dependent. In this study, we propose combining a nonparametric history-restricted marginal structural model (HRMSM) with LCGA. HRMSMs can be seen as an application of standard MSMs on multiple time intervals. To the best of our knowledge, we also present the first application of HRMSMs with a time-to-event outcome. It was previously noted that HRMSMs could pose interpretation problems in survival analysis when either targeting a hazard ratio or a survival curve. We propose a causal parameter that bypasses these interpretation challenges. We consider three different estimators of the parameters: inverse probability of treatment weighting (IPTW), g-computation, and a pooled longitudinal targeted maximum likelihood estimator (pooled LTMLE). We conduct simulation studies to measure the performance of the proposed LCGA-HRMSM. For all scenarios, we obtain unbiased estimates when using either g-computation or pooled LTMLE. IPTW produced estimates with slightly larger bias in some scenarios. Overall, all approaches have good coverage of the 95 % confidence interval. We applied our approach to a population of older Quebecers composed of 57,211 statin initiators and found that a greater adherence to statins was associated with a lower combined risk of cardiovascular disease or all-cause mortality.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.