{"title":"Regression analysis of clustered current status data with informative cluster size under a transformed survival model.","authors":"Yanqin Feng, Shijiao Yin, Jieli Ding","doi":"10.1515/ijb-2023-0130","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we study inference methods for regression analysis of clustered current status data with informative cluster sizes. When the correlated failure times of interest arise from a general class of semiparametric transformation frailty models, we develop a nonparametric maximum likelihood estimation based method for regression analysis and conduct an expectation-maximization algorithm to implement it. The asymptotic properties including consistency and asymptotic normality of the proposed estimators are established. Extensive simulation studies are conducted and indicate that the proposed method works well. The developed approach is applied to analyze a real-life data set from a tumorigenicity study.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2023-0130","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study inference methods for regression analysis of clustered current status data with informative cluster sizes. When the correlated failure times of interest arise from a general class of semiparametric transformation frailty models, we develop a nonparametric maximum likelihood estimation based method for regression analysis and conduct an expectation-maximization algorithm to implement it. The asymptotic properties including consistency and asymptotic normality of the proposed estimators are established. Extensive simulation studies are conducted and indicate that the proposed method works well. The developed approach is applied to analyze a real-life data set from a tumorigenicity study.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.